論文の概要: Multifidelity Surrogate Models: A New Data Fusion Perspective
- arxiv url: http://arxiv.org/abs/2404.14456v1
- Date: Sun, 21 Apr 2024 11:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:07:28.903222
- Title: Multifidelity Surrogate Models: A New Data Fusion Perspective
- Title(参考訳): マルチファイダリティ・サロゲートモデル:新しいデータフュージョン
- Authors: Daniel N Wilke,
- Abstract要約: 多要素サロゲートモデリングは、異なるソースからの様々な精度とコストのデータを組み合わせる。
戦略的に低忠実度モデルを用いて、迅速な評価を行い、計算資源を節約している。
これは不確実性に対処し、単一忠実性モデルの限界を超えることで意思決定を改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multifidelity surrogate modelling combines data of varying accuracy and cost from different sources. It strategically uses low-fidelity models for rapid evaluations, saving computational resources, and high-fidelity models for detailed refinement. It improves decision-making by addressing uncertainties and surpassing the limits of single-fidelity models, which either oversimplify or are computationally intensive. Blending high-fidelity data for detailed responses with frequent low-fidelity data for quick approximations facilitates design optimisation in various domains. Despite progress in interpolation, regression, enhanced sampling, error estimation, variable fidelity, and data fusion techniques, challenges persist in selecting fidelity levels and developing efficient data fusion methods. This study proposes a new fusion approach to construct multi-fidelity surrogate models by constructing gradient-only surrogates that use only gradients to construct regression surfaces. Results are demonstrated on foundational example problems that isolate and illustrate the fusion approach's efficacy, avoiding the need for complex examples that obfuscate the main concept.
- Abstract(参考訳): 多要素サロゲートモデリングは、異なるソースからの様々な精度とコストのデータを組み合わせる。
戦略的には、高速な評価、計算資源の節約、詳細な精細化のための高忠実度モデルに低忠実度モデルを使用する。
これは不確実性に対処し、計算的に過度に単純化または過度に集約された単一忠実度モデルの限界を超えることによって、意思決定を改善する。
高速近似のための高忠実度データと頻繁な低忠実度データとのブレンディングにより、様々な領域の設計最適化が容易になる。
補間、回帰、改良されたサンプリング、エラー推定、可変忠実度、データ融合技術の進歩にもかかわらず、忠実度レベルの選択と効率的なデータ融合法の開発には課題が続いている。
本研究は, 勾配のみを用いて回帰面を構成する勾配のみのサロゲートを構築することで, 多重忠実サロゲートモデルを構築するための新しい融合手法を提案する。
結果は、核融合アプローチの有効性を分離し、説明する基礎的な例問題で示され、主要な概念を難解にする複雑な例は不要である。
関連論文リスト
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
マルチフィデリティ機械学習手法は、少ないリソース集約型高フィデリティデータと、豊富なが精度の低い低フィデリティデータを統合する。
低次元領域と高次元領域にまたがる問題に対する実用的多面性戦略を提案する。
論文 参考訳(メタデータ) (2024-07-21T10:40:50Z) - Multi-fidelity Gaussian process surrogate modeling for regression problems in physics [0.0]
多重忠実度法は、忠実度を増大させる階層内のモデルに連鎖させることによって解を提供する。
提案手法は, 一般に, 単一忠実度法と比較して, 同じ計算コストで予測誤差が小さくなることを示す。
論文 参考訳(メタデータ) (2024-04-18T07:52:12Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
マルチ忠実能動学習は、入力パラメータからシミュレーション出力への直接マッピングを最も高い忠実度で学習することを目的としている。
深層学習に基づく手法は、しばしば隠れ表現に階層構造を課し、低忠実度から高忠実度への情報伝達のみをサポートする。
本稿では,D-MFDAL(Disentangled Multi-fidelity Deep Bayesian Active Learning)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-07T23:14:58Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - General multi-fidelity surrogate models: Framework and active learning
strategies for efficient rare event simulation [1.708673732699217]
複雑な現実世界のシステムの失敗の確率を推定することは、しばしば違法に高価である。
本稿では,頑健な多要素代理モデリング戦略を提案する。
高忠実度モデル呼び出しの数を劇的に削減しながら、非常に正確であることが示されている。
論文 参考訳(メタデータ) (2022-12-07T00:03:21Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
パラメタライズされた時間依存問題に対する多要素代理モデリングの新しいデータ駆動フレームワークを提案する。
提案した多要素LSTMネットワークは, シングルフィデリティ回帰を著しく向上するだけでなく, フィードフォワードニューラルネットワークに基づくマルチフィデリティモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-08-05T12:05:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。