論文の概要: Inference of Causal Networks using a Topological Threshold
- arxiv url: http://arxiv.org/abs/2404.14460v1
- Date: Sun, 21 Apr 2024 21:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:07:28.893693
- Title: Inference of Causal Networks using a Topological Threshold
- Title(参考訳): 位相閾値を用いた因果関係の推定
- Authors: Filipe Barroso, Diogo Gomes, Gareth J. Baxter,
- Abstract要約: 本稿では,因果関係しきい値を自動的に決定する制約に基づくアルゴリズムを提案する。
このアルゴリズムは一般にPCアルゴリズムよりも高速で精度が高いことを示す。
- 参考スコア(独自算出の注目度): 0.10241134756773226
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a constraint-based algorithm, which automatically determines causal relevance thresholds, to infer causal networks from data. We call these topological thresholds. We present two methods for determining the threshold: the first seeks a set of edges that leaves no disconnected nodes in the network; the second seeks a causal large connected component in the data. We tested these methods both for discrete synthetic and real data, and compared the results with those obtained for the PC algorithm, which we took as the benchmark. We show that this novel algorithm is generally faster and more accurate than the PC algorithm. The algorithm for determining the thresholds requires choosing a measure of causality. We tested our methods for Fisher Correlations, commonly used in PC algorithm (for instance in \cite{kalisch2005}), and further proposed a discrete and asymmetric measure of causality, that we called Net Influence, which provided very good results when inferring causal networks from discrete data. This metric allows for inferring directionality of the edges in the process of applying the thresholds, speeding up the inference of causal DAGs.
- Abstract(参考訳): 本稿では,データから因果関係ネットワークを推定するために,因果関係しきい値を自動的に決定する制約に基づくアルゴリズムを提案する。
私たちはこれらのトポロジカルしきい値(topological thresholds)と呼ぶ。
しきい値を決定するための2つの方法を提案する。第1はネットワークに切断されたノードを残さないエッジの集合を求め、第2はデータに因果的に大きな接続されたコンポーネントを求める。
これらの手法を離散合成データと実データの両方でテストし、その結果をPCアルゴリズムで得られた結果と比較した。
このアルゴリズムは一般にPCアルゴリズムよりも高速で精度が高いことを示す。
しきい値を決定するアルゴリズムは因果関係の尺度を選択する必要がある。
我々はPCアルゴリズムでよく用いられるフィッシャー相関法を検証し(例えば \cite{kalisch2005})、さらにNet Influenceと呼ばれる因果関係の離散的で非対称な尺度を提案し、離散データから因果関係を推定する際に非常に良い結果を与えた。
この計量は、しきい値を適用する過程でエッジの方向を推定することができ、因果DAGの推論を高速化する。
関連論文リスト
- Neural Algorithmic Reasoning with Causal Regularisation [18.299363749150093]
我々は重要な観察を行う: アルゴリズムが特定の中間計算を同一に実行する多くの異なる入力が存在する。
この洞察により、アルゴリズムの中間軌道が与えられた場合、ターゲットアルゴリズムが全く同じ次の軌道ステップを持つような入力を生成するデータ拡張手順を開発することができる。
我々は、Hint-Relicと呼ばれる結果の手法が、推論器のOOD一般化能力を改善することを証明した。
論文 参考訳(メタデータ) (2023-02-20T19:41:15Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - A Fast PC Algorithm with Reversed-order Pruning and A Parallelization
Strategy [22.31288740171446]
PCアルゴリズムは観測データに基づく因果構造発見のための最先端のアルゴリズムである。
条件付き独立テストが実行された場合、最悪の場合、計算コストがかかる可能性がある。
これにより、タスクが数百から数千のノードを含む場合、アルゴリズムは計算的に難解になる。
本稿では、2つのノードを独立にレンダリングする条件セットが非特異であり、特定の冗長ノードを含む場合、結果の精度を犠牲にしない、という批判的な観察を提案する。
論文 参考訳(メタデータ) (2021-09-10T02:22:10Z) - A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data [0.40611352512781856]
本稿では,高次元離散データから疎構造ベイズネットワークを学習する問題に対処する。
本稿では,空間特性とDAG特性を同時に満足するスコア関数を提案する。
具体的には,アルゴリズムを高次元データで効率的に動作させるため,最適化アルゴリズムに分散低減法を用いる。
論文 参考訳(メタデータ) (2021-08-21T12:21:01Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Consistency of random-walk based network embedding algorithms [13.214230533788932]
node2vecアルゴリズムとDeepWalkアルゴリズムを行列ファクタリゼーションの観点から検討する。
その結果,観測ネットワークの幅,ランダムウォークのウィンドウサイズ,ノード2vec/DeepWalk埋め込みの収束率との微妙な相互作用が示唆された。
論文 参考訳(メタデータ) (2021-01-18T22:49:22Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
逆例は機械学習モデルにおいて広く研究されている現象である。
そこで本研究では,$k$-nearest 近傍分類の逆ロバスト性を評価するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:49:10Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
ニューラルネットワーク検証の基本的なコンポーネントは、出力が取ることのできる値のバウンダリの計算である。
ラグランジアン分解に基づく新しい手法を提案する。
ランニングタイムのごく一部で、既成の解法に匹敵するバウンダリが得られることを示す。
論文 参考訳(メタデータ) (2020-02-24T17:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。