Inference of Causal Networks using a Topological Threshold
- URL: http://arxiv.org/abs/2404.14460v1
- Date: Sun, 21 Apr 2024 21:56:39 GMT
- Title: Inference of Causal Networks using a Topological Threshold
- Authors: Filipe Barroso, Diogo Gomes, Gareth J. Baxter,
- Abstract summary: We propose a constraint-based algorithm, which automatically determines causal relevance thresholds.
We show that this novel algorithm is generally faster and more accurate than the PC algorithm.
- Score: 0.10241134756773226
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a constraint-based algorithm, which automatically determines causal relevance thresholds, to infer causal networks from data. We call these topological thresholds. We present two methods for determining the threshold: the first seeks a set of edges that leaves no disconnected nodes in the network; the second seeks a causal large connected component in the data. We tested these methods both for discrete synthetic and real data, and compared the results with those obtained for the PC algorithm, which we took as the benchmark. We show that this novel algorithm is generally faster and more accurate than the PC algorithm. The algorithm for determining the thresholds requires choosing a measure of causality. We tested our methods for Fisher Correlations, commonly used in PC algorithm (for instance in \cite{kalisch2005}), and further proposed a discrete and asymmetric measure of causality, that we called Net Influence, which provided very good results when inferring causal networks from discrete data. This metric allows for inferring directionality of the edges in the process of applying the thresholds, speeding up the inference of causal DAGs.
Related papers
- Neural Algorithmic Reasoning with Causal Regularisation [18.299363749150093]
We make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically.
This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step.
We prove that the resulting method, which we call Hint-ReLIC, improves the OOD generalisation capabilities of the reasoner.
arXiv Detail & Related papers (2023-02-20T19:41:15Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - A Fast PC Algorithm with Reversed-order Pruning and A Parallelization
Strategy [22.31288740171446]
The PC algorithm is the state-of-the-art algorithm for causal structure discovery on observational data.
It can be computationally expensive in the worst case due to the conditional independence tests are performed.
This makes the algorithm computationally intractable when the task contains several hundred or thousand nodes.
We propose a critical observation that the conditional set rendering two nodes independent is non-unique, and including certain redundant nodes do not sacrifice result accuracy.
arXiv Detail & Related papers (2021-09-10T02:22:10Z) - A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data [0.40611352512781856]
This paper addresses the problem of learning a sparse structure Bayesian network from high-dimensional discrete data.
We propose a score function that satisfies the sparsity and the DAG property simultaneously.
Specifically, we use a variance reducing method in our optimization algorithm to make the algorithm work efficiently in high-dimensional data.
arXiv Detail & Related papers (2021-08-21T12:21:01Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Consistency of random-walk based network embedding algorithms [13.214230533788932]
We study the node2vec and DeepWalk algorithms through the perspective of matrix factorization.
Our results indicate a subtle interplay between the sparsity of the observed networks, the window sizes of the random walks, and the convergence rates of the node2vec/DeepWalk embedding.
arXiv Detail & Related papers (2021-01-18T22:49:22Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
Adversarial examples are a widely studied phenomenon in machine learning models.
We propose an algorithm for evaluating the adversarial robustness of $k$-nearest neighbor classification.
arXiv Detail & Related papers (2020-11-19T08:49:10Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.