Align Your Steps: Optimizing Sampling Schedules in Diffusion Models
- URL: http://arxiv.org/abs/2404.14507v1
- Date: Mon, 22 Apr 2024 18:18:41 GMT
- Title: Align Your Steps: Optimizing Sampling Schedules in Diffusion Models
- Authors: Amirmojtaba Sabour, Sanja Fidler, Karsten Kreis,
- Abstract summary: Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond.
A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks.
We propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs.
- Score: 63.927438959502226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond. A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks. Sampling from DMs can be seen as solving a differential equation through a discretized set of noise levels known as the sampling schedule. While past works primarily focused on deriving efficient solvers, little attention has been given to finding optimal sampling schedules, and the entire literature relies on hand-crafted heuristics. In this work, for the first time, we propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs, called $\textit{Align Your Steps}$. We leverage methods from stochastic calculus and find optimal schedules specific to different solvers, trained DMs and datasets. We evaluate our novel approach on several image, video as well as 2D toy data synthesis benchmarks, using a variety of different samplers, and observe that our optimized schedules outperform previous hand-crafted schedules in almost all experiments. Our method demonstrates the untapped potential of sampling schedule optimization, especially in the few-step synthesis regime.
Related papers
- $\textit{Jump Your Steps}$: Optimizing Sampling Schedule of Discrete Diffusion Models [16.738569359216438]
We present $textitJump Your Steps$ (JYS), a novel approach that optimize the allocation of discrete sampling timesteps by minimizing CDE without extra computational cost.
In experiments across image, music, and text generation, JYS significantly improves sampling quality.
arXiv Detail & Related papers (2024-10-10T09:44:25Z) - FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models [10.969811500333755]
We introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization.
Our method achieves 10 times faster than the SOTA approach.
arXiv Detail & Related papers (2024-07-28T10:07:55Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Accelerating Diffusion Sampling with Optimized Time Steps [69.21208434350567]
Diffusion probabilistic models (DPMs) have shown remarkable performance in high-resolution image synthesis.
Their sampling efficiency is still to be desired due to the typically large number of sampling steps.
Recent advancements in high-order numerical ODE solvers for DPMs have enabled the generation of high-quality images with much fewer sampling steps.
arXiv Detail & Related papers (2024-02-27T10:13:30Z) - Fast Diffusion Model [122.36693015093041]
Diffusion models (DMs) have been adopted across diverse fields with their abilities in capturing intricate data distributions.
In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a DM optimization perspective.
arXiv Detail & Related papers (2023-06-12T09:38:04Z) - Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps [23.144083737873263]
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images.
Previous work has attempted to mitigate this issue by perturbing inputs during training.
We propose a novel sampling method that we propose, without retraining the model.
arXiv Detail & Related papers (2023-05-24T21:39:27Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
We focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks.
We propose Sample-specific Ensemble of Source Models (SESoM)
SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs.
arXiv Detail & Related papers (2022-10-23T01:33:16Z) - AutoSampling: Search for Effective Data Sampling Schedules [118.20014773014671]
We propose an AutoSampling method to automatically learn sampling schedules for model training.
We apply our method to a variety of image classification tasks illustrating the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-05-28T09:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.