Taming Flow Matching with Unbalanced Optimal Transport into Fast Pansharpening
- URL: http://arxiv.org/abs/2503.14975v1
- Date: Wed, 19 Mar 2025 08:10:49 GMT
- Title: Taming Flow Matching with Unbalanced Optimal Transport into Fast Pansharpening
- Authors: Zihan Cao, Yu Zhong, Liang-Jian Deng,
- Abstract summary: We propose the Optimal Transport Flow Matching framework to achieve one-step, high-quality pansharpening.<n>The OTFM framework enables simulation-free training and single-step inference while maintaining strict adherence to pansharpening constraints.
- Score: 10.23957420290553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pansharpening, a pivotal task in remote sensing for fusing high-resolution panchromatic and multispectral imagery, has garnered significant research interest. Recent advancements employing diffusion models based on stochastic differential equations (SDEs) have demonstrated state-of-the-art performance. However, the inherent multi-step sampling process of SDEs imposes substantial computational overhead, hindering practical deployment. While existing methods adopt efficient samplers, knowledge distillation, or retraining to reduce sampling steps (e.g., from 1,000 to fewer steps), such approaches often compromise fusion quality. In this work, we propose the Optimal Transport Flow Matching (OTFM) framework, which integrates the dual formulation of unbalanced optimal transport (UOT) to achieve one-step, high-quality pansharpening. Unlike conventional OT formulations that enforce rigid distribution alignment, UOT relaxes marginal constraints to enhance modeling flexibility, accommodating the intrinsic spectral and spatial disparities in remote sensing data. Furthermore, we incorporate task-specific regularization into the UOT objective, enhancing the robustness of the flow model. The OTFM framework enables simulation-free training and single-step inference while maintaining strict adherence to pansharpening constraints. Experimental evaluations across multiple datasets demonstrate that OTFM matches or exceeds the performance of previous regression-based models and leading diffusion-based methods while only needing one sampling step. Codes are available at https://github.com/294coder/PAN-OTFM.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - ResPanDiff: Diffusion Model for Pansharpening by Inferring Residual Inference [8.756657890124766]
We introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff)<n>ResPanDiff significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task.<n>Our experiments demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art(SOTA) techniques.
arXiv Detail & Related papers (2025-01-09T09:15:07Z) - Constrained Diffusion with Trust Sampling [11.354281911272864]
We rethink training-free loss-guided diffusion from an optimization perspective.
Trust sampling effectively balances following the unconditional diffusion model and adhering to the loss guidance.
We demonstrate the efficacy of our method through extensive experiments on complex tasks, and in drastically different domains of images and 3D motion generation.
arXiv Detail & Related papers (2024-11-17T01:34:57Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
We propose to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality.
Our method achieves new state-of-the-art in diffusion-based inverse problem solving.
arXiv Detail & Related papers (2024-07-17T15:57:50Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.<n>We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Adversarial Schrödinger Bridge Matching [66.39774923893103]
Iterative Markovian Fitting (IMF) procedure alternates between Markovian and reciprocal projections of continuous-time processes.
We propose a novel Discrete-time IMF (D-IMF) procedure in which learning of processes is replaced by learning just a few transition probabilities in discrete time.
We show that our D-IMF procedure can provide the same quality of unpaired domain translation as the IMF, using only several generation steps instead of hundreds.
arXiv Detail & Related papers (2024-05-23T11:29:33Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Variational Schrödinger Diffusion Models [14.480273869571468]
Schr"odinger bridge (SB) has emerged as the go-to method for optimizing transportation plans in diffusion models.
We leverage variational inference to linearize the forward score functions (variational scores) of SB.
We propose the variational Schr"odinger diffusion model (VSDM), where the forward process is a multivariate diffusion and the variational scores are adaptively optimized for efficient transport.
arXiv Detail & Related papers (2024-05-08T04:01:40Z) - Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following [21.81411085058986]
Reward-gradient guided denoising generates trajectories that maximize both a differentiable reward function and the likelihood under the data distribution captured by a diffusion model.
We propose DiffusionES, a method that combines gradient-free optimization with trajectory denoising.
We show that DiffusionES achieves state-of-the-art performance on nuPlan, an established closed-loop planning benchmark for autonomous driving.
arXiv Detail & Related papers (2024-02-09T17:18:33Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.