KI-PMF: Knowledge Integrated Plausible Motion Forecasting
- URL: http://arxiv.org/abs/2310.12007v3
- Date: Tue, 30 Jul 2024 13:35:51 GMT
- Title: KI-PMF: Knowledge Integrated Plausible Motion Forecasting
- Authors: Abhishek Vivekanandan, Ahmed Abouelazm, Philip Schörner, J. Marius Zöllner,
- Abstract summary: Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric.
Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle.
Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations.
- Score: 11.311561045938546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately forecasting the motion of traffic actors is crucial for the deployment of autonomous vehicles at a large scale. Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric, which can result in predictions that do not adhere to physical laws or violate external constraints. Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle and the geometry of the driving environment. To achieve this, we introduce a non-parametric pruning layer and attention layers to integrate the defined knowledge priors. Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations. By conditioning the network to follow physical laws, we can obtain accurate and safe predictions, essential for maintaining autonomous vehicles' safety and efficiency in real-world settings.In summary, this paper presents concepts that prevent off-road predictions for safe and reliable motion forecasting by incorporating knowledge priors into the training process.
Related papers
- Reliable Probabilistic Human Trajectory Prediction for Autonomous Applications [1.8294777056635267]
Vehicle systems need reliable, accurate, fast, resource-efficient, scalable, and low-latency trajectory predictions.
This paper presents a lightweight method to address these requirements, combining Long Short-Term Memory and Mixture Density Networks.
We discuss essential requirements for human trajectory prediction in autonomous vehicle applications and demonstrate our method's performance using traffic-related datasets.
arXiv Detail & Related papers (2024-10-09T14:08:39Z) - QuAD: Query-based Interpretable Neural Motion Planning for Autonomous Driving [33.609780917199394]
Self-driving vehicles must understand its environment to determine appropriate action.
Traditional systems rely on object detection to find agents in the scene.
We present a unified, interpretable, and efficient autonomy framework that moves away from cascading modules that first perceive occupancy relevant-temporal autonomy.
arXiv Detail & Related papers (2024-04-01T21:11:43Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
Trajectory prediction is one of the key components of the autonomous driving software stack.
In this paper, a self-aware trajectory prediction method is proposed.
The proposed method performed well in terms of self-awareness, memory footprint, and real-time performance.
arXiv Detail & Related papers (2023-05-16T03:53:23Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Physically Feasible Vehicle Trajectory Prediction [3.3748750222488657]
We describe three important properties -- physical realism guarantees, system maintainability, and sample efficiency.
We introduce PTNet, a novel approach for vehicle trajectory prediction that is a hybrid of the classical pure pursuit path tracking algorithm and modern graph-based neural networks.
arXiv Detail & Related papers (2021-04-29T22:13:41Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.