論文の概要: Teaching Network Traffic Matrices in an Interactive Game Environment
- arxiv url: http://arxiv.org/abs/2404.14643v1
- Date: Tue, 23 Apr 2024 00:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 15:50:59.338978
- Title: Teaching Network Traffic Matrices in an Interactive Game Environment
- Title(参考訳): 対話型ゲーム環境におけるネットワークトラフィックマトリクスの教育
- Authors: Chasen Milner, Hayden Jananthan, Jeremy Kepner, Vijay Gadepally, Michael Jones, Peter Michaleas, Ritesh Patel, Sandeep Pisharody, Gabriel Wachman, Alex Pentland,
- Abstract要約: ネットワークトラフィックマトリックスの概念は、オンラインコンピュータネットワークやサイバーセキュリティ教育リソースではほとんど利用できない。
このギャップを埋めるためにインタラクティブなゲーム環境が開発された。
ゲーム環境は、幅広いコンテキストでのデリバリを可能にし、迅速なフィードバックと改善を可能にします。
- 参考スコア(独自算出の注目度): 7.014398615637452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet has become a critical domain for modern society that requires ongoing efforts for its improvement and protection. Network traffic matrices are a powerful tool for understanding and analyzing networks and are broadly taught in online graph theory educational resources. Network traffic matrix concepts are rarely available in online computer network and cybersecurity educational resources. To fill this gap, an interactive game environment has been developed to teach the foundations of traffic matrices to the computer networking community. The game environment provides a convenient, broadly accessible, delivery mechanism that enables making material available rapidly to a wide audience. The core architecture of the game is a facility to add new network traffic matrix training modules via an easily editable JSON file. Using this facility an initial set of modules were rapidly created covering: basic traffic matrices, traffic patterns, security/defense/deterrence, a notional cyber attack, a distributed denial-of-service (DDoS) attack, and a variety of graph theory concepts. The game environment enables delivery in a wide range of contexts to enable rapid feedback and improvement. The game can be used as a core unit as part of a formal course or as a simple interactive introduction in a presentation.
- Abstract(参考訳): インターネットは現代社会にとって重要な領域となり、その改善と保護のために継続的な努力を必要としている。
ネットワークトラフィック行列はネットワークを理解し解析するための強力なツールであり、オンライングラフ理論の教育資源で広く教えられている。
ネットワークトラフィックマトリックスの概念は、オンラインコンピュータネットワークやサイバーセキュリティ教育リソースではほとんど利用できない。
このギャップを埋めるために、コンピュータネットワークコミュニティにトラフィック行列の基礎を教えるインタラクティブなゲーム環境が開発された。
ゲーム環境は便利で、広くアクセス可能な、配信メカニズムを提供する。
ゲームのコアアーキテクチャは、簡単に編集可能なJSONファイルを通じて、新しいネットワークトラフィックマトリックストレーニングモジュールを追加する機能である。
基本的なトラフィック行列、トラフィックパターン、セキュリティ/セキュリティ/防御/破壊、記名的なサイバー攻撃、分散型サービス拒否(DDoS)攻撃、グラフ理論の概念などである。
ゲーム環境は、幅広いコンテキストでのデリバリを可能にし、迅速なフィードバックと改善を可能にします。
ゲームは、正式なコースの一部としてコアユニットとして、あるいはプレゼンテーションにおける単純なインタラクティブな紹介として使用することができる。
関連論文リスト
- Towards a graph-based foundation model for network traffic analysis [3.0558245652654907]
基礎モデルはネットワークトラフィックの複雑さを把握でき、最小限の微調整で特定のタスクや環境に適応できる。
従来のアプローチではトークン化ヘックスレベルのパケットデータを使用していた。
本稿では,フローレベルでグラフベースの新しい代替案を提案する。
論文 参考訳(メタデータ) (2024-09-12T15:04:34Z) - Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lensは、T5アーキテクチャを活用して、大規模な未ラベルデータから事前訓練された表現を学習するネットワークトラフィックの基礎モデルである。
Masked Span Prediction(MSP)、Packet Order Prediction(POP)、Homologous Traffic Prediction(HTP)の3つの異なるタスクを組み合わせた新しい損失を設計する。
論文 参考訳(メタデータ) (2024-02-06T02:45:13Z) - SpawnNet: Learning Generalizable Visuomotor Skills from Pre-trained
Networks [52.766795949716986]
本稿では,事前学習した視覚表現のカテゴリレベルでの一般化能力について検討する。
本研究では,事前学習した多層表現を独立したネットワークに融合させて,ロバストなポリシーを学習する,新しい2ストリームアーキテクチャSpawnNetを提案する。
論文 参考訳(メタデータ) (2023-07-07T13:01:29Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
本稿では、スケーラブルなエンドツーエンドセマンティック通信ネットワークの最初の厳密なビジョンを示す。
まず、セマンティック・コミュニケーション・ネットワークの設計は、データ駆動型ネットワークから知識駆動型ネットワークへどのように移行する必要があるかについて議論する。
意味表現と言語を用いることで、従来の送信機と受信機が教師と見習いになることを示す。
論文 参考訳(メタデータ) (2022-11-25T19:03:25Z) - Introduction to the Artificial Intelligence that can be applied to the
Network Automation Journey [68.8204255655161]
Intent-Based Networking - Concepts and Definitions"ドキュメントには、NetDevOpsに関わる可能性のあるエコシステムのさまざまな部分について記述されている。
認識、生成、翻訳、精巧な機能には、アルゴリズムを実装するための新しい方法が必要だ。
論文 参考訳(メタデータ) (2022-04-02T08:12:08Z) - Cybersecurity Threats in Connected and Automated Vehicles based
Federated Learning Systems [7.979659145328856]
Federated Learning(FL)は、ローカルデータをプライベートに保持する分散型エンティティにまたがるアルゴリズムのトレーニングを目的とする。
ほとんどのサイバー防御技術は、信頼性の高い接続ネットワークに依存します。
本稿では、RSUで進行中のFLプロセスをターゲットにした偽情報攻撃について検討する。
論文 参考訳(メタデータ) (2021-02-26T01:39:16Z) - Where2Act: From Pixels to Actions for Articulated 3D Objects [54.19638599501286]
可動部を有する関節物体の押出しや引抜き等の基本動作に関連する高度に局所化された動作可能な情報を抽出する。
シミュレーションでネットワークをトレーニングできるオンラインデータサンプリング戦略を備えた学習から対話までのフレームワークを提案します。
私たちの学習モデルは、現実世界のデータにも転送します。
論文 参考訳(メタデータ) (2021-01-07T18:56:38Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
この研究は、データ中毒やネットワーク攻撃から学習を保護するために、セキュアな分散アルゴリズムを開発することを目的としている。
我々は,分散サポートベクトルマシン(SVM)を使用する学習者と,トレーニングデータやラベルを変更することができる攻撃者の相反する目標を捉えるためのゲーム理論の枠組みを確立する。
数値的な結果から,分散SVMは異なるタイプの攻撃で失敗する傾向にあり,ネットワーク構造や攻撃能力に強い依存があることが分かる。
論文 参考訳(メタデータ) (2020-03-08T18:54:17Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。