AI Procurement Checklists: Revisiting Implementation in the Age of AI Governance
- URL: http://arxiv.org/abs/2404.14660v1
- Date: Tue, 23 Apr 2024 01:45:38 GMT
- Title: AI Procurement Checklists: Revisiting Implementation in the Age of AI Governance
- Authors: Tom Zick, Mason Kortz, David Eaves, Finale Doshi-Velez,
- Abstract summary: Public sector use of AI has been on the rise for the past decade, but only recently have efforts to enter it entered the cultural zeitgeist.
While simple to articulate, promoting ethical and effective roll outs of AI systems in government is a notoriously elusive task.
- Score: 18.290959557311552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public sector use of AI has been quietly on the rise for the past decade, but only recently have efforts to regulate it entered the cultural zeitgeist. While simple to articulate, promoting ethical and effective roll outs of AI systems in government is a notoriously elusive task. On the one hand there are hard-to-address pitfalls associated with AI-based tools, including concerns about bias towards marginalized communities, safety, and gameability. On the other, there is pressure not to make it too difficult to adopt AI, especially in the public sector which typically has fewer resources than the private sector$\unicode{x2014}$conserving scarce government resources is often the draw of using AI-based tools in the first place. These tensions create a real risk that procedures built to ensure marginalized groups are not hurt by government use of AI will, in practice, be performative and ineffective. To inform the latest wave of regulatory efforts in the United States, we look to jurisdictions with mature regulations around government AI use. We report on lessons learned by officials in Brazil, Singapore and Canada, who have collectively implemented risk categories, disclosure requirements and assessments into the way they procure AI tools. In particular, we investigate two implemented checklists: the Canadian Directive on Automated Decision-Making (CDADM) and the World Economic Forum's AI Procurement in a Box (WEF). We detail three key pitfalls around expertise, risk frameworks and transparency, that can decrease the efficacy of regulations aimed at government AI use and suggest avenues for improvement.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - False Sense of Security in Explainable Artificial Intelligence (XAI) [3.298597939573779]
We argue that AI regulations and current market conditions threaten effective AI governance and safety.
Unless governments explicitly tackle the issue of explainability through clear legislative and policy statements, AI governance risks becoming a vacuous "box-ticking" exercise.
arXiv Detail & Related papers (2024-05-06T20:02:07Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Regulating AI-Based Remote Biometric Identification. Investigating the Public Demand for Bans, Audits, and Public Database Registrations [0.0]
The study focuses on the role of trust in AI as well as trust in law enforcement as potential factors that may lead to demands for regulation of AI technology.
We show that perceptions of discrimination lead to a demand for stronger regulation, while trust in AI and trust in law enforcement lead to opposite effects in terms of demand for a ban on RBI systems.
arXiv Detail & Related papers (2024-01-24T17:22:33Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Quantitative study about the estimated impact of the AI Act [0.0]
We suggest a systematic approach that we applied on the initial draft of the AI Act that has been released in April 2021.
We went through several iterations of compiling the list of AI products and projects in and from Germany, which the Lernende Systeme platform lists.
It turns out that only about 30% of the AI systems considered would be regulated by the AI Act, the rest would be classified as low-risk.
arXiv Detail & Related papers (2023-03-29T06:23:16Z) - Both eyes open: Vigilant Incentives help Regulatory Markets improve AI
Safety [69.59465535312815]
Regulatory Markets for AI is a proposal designed with adaptability in mind.
It involves governments setting outcome-based targets for AI companies to achieve.
We warn that it is alarmingly easy to stumble on incentives which would prevent Regulatory Markets from achieving this goal.
arXiv Detail & Related papers (2023-03-06T14:42:05Z) - Advancing Artificial Intelligence and Machine Learning in the U.S.
Government Through Improved Public Competitions [2.741266294612776]
In the last two years, the U.S. government has emphasized the importance of accelerating artificial intelligence (AI) and machine learning (ML)
The U.S. government can benefit from public artificial intelligence and machine learning challenges through the development of novel algorithms and participation in experiential training.
Herein we identify common issues and recommend approaches to increase the effectiveness of challenges.
arXiv Detail & Related papers (2021-11-29T16:35:38Z) - Ethics and Governance of Artificial Intelligence: Evidence from a Survey
of Machine Learning Researchers [0.0]
Machine learning (ML) and artificial intelligence (AI) researchers play an important role in the ethics and governance of AI.
We conducted a survey of those who published in the top AI/ML conferences.
We find that AI/ML researchers place high levels of trust in international organizations and scientific organizations.
arXiv Detail & Related papers (2021-05-05T15:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.