Responsible Artificial Intelligence (RAI) in U.S. Federal Government : Principles, Policies, and Practices
- URL: http://arxiv.org/abs/2502.03470v1
- Date: Sun, 12 Jan 2025 16:06:37 GMT
- Title: Responsible Artificial Intelligence (RAI) in U.S. Federal Government : Principles, Policies, and Practices
- Authors: Atul Rawal, Katie Johnson, Curtis Mitchell, Michael Walton, Diamond Nwankwo,
- Abstract summary: Artificial intelligence (AI) and machine learning (ML) have made tremendous advancements in the past decades.
rapid growth of AI/ML and its proliferation in numerous private and public sector applications, while successful, has opened new challenges and obstacles for regulators.
With almost little to no human involvement required for some of the new decision-making AI/ML systems, there is now a pressing need to ensure the responsible use of these systems.
- Score: 0.0
- License:
- Abstract: Artificial intelligence (AI) and machine learning (ML) have made tremendous advancements in the past decades. From simple recommendation systems to more complex tumor identification systems, AI/ML systems have been utilized in a plethora of applications. This rapid growth of AI/ML and its proliferation in numerous private and public sector applications, while successful, has also opened new challenges and obstacles for regulators. With almost little to no human involvement required for some of the new decision-making AI/ML systems, there is now a pressing need to ensure the responsible use of these systems. Particularly in federal government use-cases, the use of AI technologies must be carefully governed by appropriate transparency and accountability mechanisms. This has given rise to new interdisciplinary fields of AI research such as \textit{Responsible AI (RAI)}. In this position paper we provide a brief overview of development in RAI and discuss some of the motivating principles commonly explored in the field. An overview of the current regulatory landscape relating to AI is also discussed with analysis of different Executive Orders, policies and frameworks. We then present examples of how federal agencies are aiming for the responsible use of AI, specifically we present use-case examples of different projects and research from the Census Bureau on implementing the responsible use of AI. We also provide a brief overview for a Responsible AI Assessment Toolkit currently under-development aimed at helping federal agencies operationalize RAI principles. Finally, a robust discussion on how different policies/regulations map to RAI principles, along with challenges and opportunities for regulation/governance of responsible AI within the federal government is presented.
Related papers
- Who is Responsible? The Data, Models, Users or Regulations? Responsible Generative AI for a Sustainable Future [8.141210005338099]
Responsible Artificial Intelligence (RAI) has emerged as a crucial framework for addressing ethical concerns in the development and deployment of AI systems.
This article examines the challenges and opportunities in implementing ethical, transparent, and accountable AI systems in the post-ChatGPT era.
arXiv Detail & Related papers (2025-01-15T20:59:42Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Do Responsible AI Artifacts Advance Stakeholder Goals? Four Key Barriers Perceived by Legal and Civil Stakeholders [59.17981603969404]
The responsible AI (RAI) community has introduced numerous processes and artifacts to facilitate transparency and support the governance of AI systems.
We conduct semi-structured interviews with 19 government, legal, and civil society stakeholders who inform policy and advocacy around responsible AI efforts.
We organize these beliefs into four barriers that help explain how RAI artifacts may (inadvertently) reconfigure power relations across civil society, government, and industry.
arXiv Detail & Related papers (2024-08-22T00:14:37Z) - AI Procurement Checklists: Revisiting Implementation in the Age of AI Governance [18.290959557311552]
Public sector use of AI has been on the rise for the past decade, but only recently have efforts to enter it entered the cultural zeitgeist.
While simple to articulate, promoting ethical and effective roll outs of AI systems in government is a notoriously elusive task.
arXiv Detail & Related papers (2024-04-23T01:45:38Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - Responsible AI Governance: A Systematic Literature Review [8.318630741859113]
This paper aims to examine the existing literature on AI Governance.
The focus of this study is to analyse the literature to answer key questions: WHO is accountable for AI systems' governance, WHAT elements are being governed, WHEN governance occurs within the AI development life cycle, and HOW it is executed through various mechanisms like frameworks, tools, standards, policies, or models.
The findings of this study provides a foundational basis for future research and development of comprehensive governance models that align with RAI principles.
arXiv Detail & Related papers (2023-12-18T05:22:36Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - AI Governance for Businesses [2.072259480917207]
It aims at leveraging AI through effective use of data and minimization of AI-related cost and risk.
This work views AI products as systems, where key functionality is delivered by machine learning (ML) models leveraging (training) data.
Our framework decomposes AI governance into governance of data, (ML) models and (AI) systems along four dimensions.
arXiv Detail & Related papers (2020-11-20T22:31:37Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.