論文の概要: 3DBench: A Scalable 3D Benchmark and Instruction-Tuning Dataset
- arxiv url: http://arxiv.org/abs/2404.14678v1
- Date: Tue, 23 Apr 2024 02:06:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 15:31:26.820854
- Title: 3DBench: A Scalable 3D Benchmark and Instruction-Tuning Dataset
- Title(参考訳): 3DBench: スケーラブルな3Dベンチマークとインストラクションチューニングデータセット
- Authors: Junjie Zhang, Tianci Hu, Xiaoshui Huang, Yongshun Gong, Dan Zeng,
- Abstract要約: 3DBenchと呼ばれる大規模命令チューニングデータセットを伴って,スケーラブルな3Dベンチマークを導入する。
具体的には、オブジェクトレベルからシーンレベルまで、幅広い空間的・意味的なスケールにまたがるベンチマークを確立する。
我々は、スケーラブルな3D命令チューニングデータセットを自動構築するための厳格なパイプラインを提案し、合計0.23百万QAペアが生成される10の多様なマルチモーダルタスクをカバーしている。
- 参考スコア(独自算出の注目度): 13.808860456901204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the performance of Multi-modal Large Language Models (MLLMs), integrating both point cloud and language, presents significant challenges. The lack of a comprehensive assessment hampers determining whether these models truly represent advancements, thereby impeding further progress in the field. Current evaluations heavily rely on classification and caption tasks, falling short in providing a thorough assessment of MLLMs. A pressing need exists for a more sophisticated evaluation method capable of thoroughly analyzing the spatial understanding and expressive capabilities of these models. To address these issues, we introduce a scalable 3D benchmark, accompanied by a large-scale instruction-tuning dataset known as 3DBench, providing an extensible platform for a comprehensive evaluation of MLLMs. Specifically, we establish the benchmark that spans a wide range of spatial and semantic scales, from object-level to scene-level, addressing both perception and planning tasks. Furthermore, we present a rigorous pipeline for automatically constructing scalable 3D instruction-tuning datasets, covering 10 diverse multi-modal tasks with more than 0.23 million QA pairs generated in total. Thorough experiments evaluating trending MLLMs, comparisons against existing datasets, and variations of training protocols demonstrate the superiority of 3DBench, offering valuable insights into current limitations and potential research directions.
- Abstract(参考訳): マルチモーダル大規模言語モデル(MLLM)の性能を評価し、ポイントクラウドと言語を統合することで、大きな課題が浮かび上がっている。
これらのモデルが真の進歩を表すかどうかを判断する包括的なアセスメントの欠如は、この分野のさらなる進歩を妨げる。
現在の評価は分類とキャプションのタスクに大きく依存しており、MLLMの徹底的な評価には不足している。
これらのモデルの空間的理解と表現能力を徹底的に分析できる,より洗練された評価手法の必要性がある。
これらの問題に対処するため,我々は3DBenchと呼ばれる大規模命令チューニングデータセットを伴ってスケーラブルな3Dベンチマークを導入し,MLLMの総合的な評価のための拡張可能なプラットフォームを提供する。
具体的には、オブジェクトレベルからシーンレベルまで幅広い空間的・意味的なスケールにまたがるベンチマークを構築し、知覚と計画の両方に対処する。
さらに、スケーラブルな3Dインストラクションチューニングデータセットを自動的に構築するための厳密なパイプラインを提案し、合計0.23万QAペアが生成される10の多様なマルチモーダルタスクをカバーする。
トレンドMLLM、既存のデータセットとの比較、トレーニングプロトコルのバリエーションを評価する詳細な実験は、3DBenchの優位性を示し、現在の制限と潜在的研究方向に関する貴重な洞察を提供する。
関連論文リスト
- MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) は言語理解能力、画像理解能力、言語と画像の接地能力を客観的に評価する重要なクロスモーダルタスクである。
我々は2つの重要な特徴を特徴とする新しいRECデータセットを構築した。
これには、既存のデータに基づいて微細な編集と生成によって作成された否定的なテキストと画像が含まれる。
論文 参考訳(メタデータ) (2024-09-23T06:56:51Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - Multi-modal Situated Reasoning in 3D Scenes [32.800524889357305]
大規模マルチモーダル位置推論データセットであるMSQA(Multi-modal Situated Question Answering)を提案する。
MSQAには、9つの異なる質問カテゴリにまたがる251Kの質問答えペアが含まれており、複雑なシナリオを3Dシーンでカバーしている。
また,MSNN(Multi-modal Situated Next-step Navigation)ベンチマークを考案し,ナビゲーションに対するモデルの位置的推論を評価する。
論文 参考訳(メタデータ) (2024-09-04T02:37:38Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - Large Language Models as Automated Aligners for benchmarking
Vision-Language Models [48.4367174400306]
VLM(Vision-Language Models)は新しいレベルの高度化に達し、複雑な認知と推論タスクの実行において顕著な能力を示している。
既存の評価ベンチマークは、厳密で手作りのデータセットを主に頼りにしており、人為的なモデルと人間の知性との整合性を評価する上で、重大な制限に直面している。
本研究では,LLMを有能なキュレーションとして探求し,自動データキュレーションとアセスメントによってVLMと人間の知性と価値のアライメントを測定するAuto-Benchを用いて,その限界に対処する。
論文 参考訳(メタデータ) (2023-11-24T16:12:05Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。