Interpretable Prediction and Feature Selection for Survival Analysis
- URL: http://arxiv.org/abs/2404.14689v1
- Date: Tue, 23 Apr 2024 02:36:54 GMT
- Title: Interpretable Prediction and Feature Selection for Survival Analysis
- Authors: Mike Van Ness, Madeleine Udell,
- Abstract summary: We present DyS (pronounced dice''), a new survival analysis model that achieves both strong discrimination and interpretability.
DyS is a feature-sparse Generalized Additive Model, combining feature selection and interpretable prediction into one model.
- Score: 18.987678432106563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is widely used as a technique to model time-to-event data when some data is censored, particularly in healthcare for predicting future patient risk. In such settings, survival models must be both accurate and interpretable so that users (such as doctors) can trust the model and understand model predictions. While most literature focuses on discrimination, interpretability is equally as important. A successful interpretable model should be able to describe how changing each feature impacts the outcome, and should only use a small number of features. In this paper, we present DyS (pronounced ``dice''), a new survival analysis model that achieves both strong discrimination and interpretability. DyS is a feature-sparse Generalized Additive Model, combining feature selection and interpretable prediction into one model. While DyS works well for all survival analysis problems, it is particularly useful for large (in $n$ and $p$) survival datasets such as those commonly found in observational healthcare studies. Empirical studies show that DyS competes with other state-of-the-art machine learning models for survival analysis, while being highly interpretable.
Related papers
- Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Interpretable machine learning for time-to-event prediction in medicine and healthcare [7.416913210816592]
We introduce time-dependent feature effects and global feature importance explanations.
We show how post-hoc interpretation methods allow for finding biases in AI systems predicting length of stay.
We evaluate cancer survival models beyond predictive performance to include the importance of multi-omics feature groups.
arXiv Detail & Related papers (2023-03-17T07:53:18Z) - Reverse Survival Model (RSM): A Pipeline for Explaining Predictions of
Deep Survival Models [0.0]
We propose the reverse survival model (RSM) framework that provides detailed insights into the decision-making process of survival models.
For each patient of interest, RSM can extract similar patients from a dataset and rank them based on the most relevant features that deep survival models rely on for their predictions.
arXiv Detail & Related papers (2022-10-27T03:39:01Z) - SurvSHAP(t): Time-dependent explanations of machine learning survival
models [6.950862982117125]
We introduce SurvSHAP(t), the first time-dependent explanation that allows for interpreting survival black-box models.
Experiments on synthetic and medical data confirm that SurvSHAP(t) can detect variables with a time-dependent effect.
We provide an accessible implementation of time-dependent explanations in Python.
arXiv Detail & Related papers (2022-08-23T17:01:14Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning
Models on MIMIC-IV Dataset [15.436560770086205]
We focus on MIMIC-IV (Medical Information Mart for Intensive Care, version IV), the largest publicly available healthcare dataset.
We conduct comprehensive analyses of dataset representation bias as well as interpretability and prediction fairness of deep learning models for in-hospital mortality prediction.
arXiv Detail & Related papers (2021-02-12T20:28:06Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.