Reverse Survival Model (RSM): A Pipeline for Explaining Predictions of
Deep Survival Models
- URL: http://arxiv.org/abs/2210.15674v1
- Date: Thu, 27 Oct 2022 03:39:01 GMT
- Title: Reverse Survival Model (RSM): A Pipeline for Explaining Predictions of
Deep Survival Models
- Authors: Mohammad R. Rezaei, Reza Saadati Fard, Ebrahim Pourjafari, Navid
Ziaei, Amir Sameizadeh, Mohammad Shafiee, Mohammad Alavinia, Mansour
Abolghasemian, Nick Sajadi
- Abstract summary: We propose the reverse survival model (RSM) framework that provides detailed insights into the decision-making process of survival models.
For each patient of interest, RSM can extract similar patients from a dataset and rank them based on the most relevant features that deep survival models rely on for their predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of survival analysis in healthcare is to estimate the probability of
occurrence of an event, such as a patient's death in an intensive care unit
(ICU). Recent developments in deep neural networks (DNNs) for survival analysis
show the superiority of these models in comparison with other well-known models
in survival analysis applications. Ensuring the reliability and explainability
of deep survival models deployed in healthcare is a necessity. Since DNN models
often behave like a black box, their predictions might not be easily trusted by
clinicians, especially when predictions are contrary to a physician's opinion.
A deep survival model that explains and justifies its decision-making process
could potentially gain the trust of clinicians. In this research, we propose
the reverse survival model (RSM) framework that provides detailed insights into
the decision-making process of survival models. For each patient of interest,
RSM can extract similar patients from a dataset and rank them based on the most
relevant features that deep survival models rely on for their predictions.
Related papers
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Prediction and Feature Selection for Survival Analysis [18.987678432106563]
We present DyS (pronounced dice''), a new survival analysis model that achieves both strong discrimination and interpretability.
DyS is a feature-sparse Generalized Additive Model, combining feature selection and interpretable prediction into one model.
arXiv Detail & Related papers (2024-04-23T02:36:54Z) - SurvRNC: Learning Ordered Representations for Survival Prediction using Rank-N-Contrast [4.5445892770974154]
Survival Rank-N Contrast (SurvRNC) is a loss function as a regularizer to obtain an ordered representation based on the survival times.
We demonstrate that using the SurvRNC method for training can achieve higher performance on different deep survival models.
arXiv Detail & Related papers (2024-03-15T18:00:11Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Dynamic prediction of time to event with survival curves [3.9169188005935927]
We apply our recently developed counterfactual dynamic survival model (CDSM) to static and longitudinal observational data.
We prove that the inflection point of its estimated individual survival curves provides reliable prediction of the patient failure time.
arXiv Detail & Related papers (2021-01-26T12:17:27Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.