CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models
- URL: http://arxiv.org/abs/2404.14830v1
- Date: Tue, 23 Apr 2024 08:32:38 GMT
- Title: CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models
- Authors: Teodor Chiaburu, Frank Haußer, Felix Bießmann,
- Abstract summary: We present a novel approach that enables domain experts to quickly create concept-based explanations for computer vision tasks intuitively via natural language.
The modular design of CoProNN is simple to implement, it is straightforward to adapt to novel tasks and allows for replacing the classification and text-to-image models.
We show that our strategy competes very well with other concept-based XAI approaches on coarse grained image classification tasks and may even outperform those methods on more demanding fine grained tasks.
- Score: 1.0855602842179624
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Mounting evidence in explainability for artificial intelligence (XAI) research suggests that good explanations should be tailored to individual tasks and should relate to concepts relevant to the task. However, building task specific explanations is time consuming and requires domain expertise which can be difficult to integrate into generic XAI methods. A promising approach towards designing useful task specific explanations with domain experts is based on compositionality of semantic concepts. Here, we present a novel approach that enables domain experts to quickly create concept-based explanations for computer vision tasks intuitively via natural language. Leveraging recent progress in deep generative methods we propose to generate visual concept-based prototypes via text-to-image methods. These prototypes are then used to explain predictions of computer vision models via a simple k-Nearest-Neighbors routine. The modular design of CoProNN is simple to implement, it is straightforward to adapt to novel tasks and allows for replacing the classification and text-to-image models as more powerful models are released. The approach can be evaluated offline against the ground-truth of predefined prototypes that can be easily communicated also to domain experts as they are based on visual concepts. We show that our strategy competes very well with other concept-based XAI approaches on coarse grained image classification tasks and may even outperform those methods on more demanding fine grained tasks. We demonstrate the effectiveness of our method for human-machine collaboration settings in qualitative and quantitative user studies. All code and experimental data can be found in our GitHub $\href{https://github.com/TeodorChiaburu/beexplainable}{repository}$.
Related papers
- Explainable Concept Generation through Vision-Language Preference Learning [7.736445799116692]
Concept-based explanations have become a popular choice for explaining deep neural networks post-hoc.
We devise a reinforcement learning-based preference optimization algorithm that fine-tunes the vision-language generative model.
In addition to showing the efficacy and reliability of our method, we show how our method can be used as a diagnostic tool for analyzing neural networks.
arXiv Detail & Related papers (2024-08-24T02:26:42Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Augmented Commonsense Knowledge for Remote Object Grounding [67.30864498454805]
We propose an augmented commonsense knowledge model (ACK) to leverage commonsense information as atemporal knowledge graph for improving agent navigation.
ACK consists of knowledge graph-aware cross-modal and concept aggregation modules to enhance visual representation and visual-textual data alignment.
We add a new pipeline for the commonsense-based decision-making process which leads to more accurate local action prediction.
arXiv Detail & Related papers (2024-06-03T12:12:33Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations [13.60538902487872]
We present a novel post-hoc concept-based XAI framework that conveys besides instance-wise (local) also class-wise (global) decision-making strategies via prototypes.
We demonstrate the effectiveness of our approach in identifying out-of-distribution samples, spurious model behavior and data quality issues across three datasets.
arXiv Detail & Related papers (2023-11-28T10:53:26Z) - Explain Any Concept: Segment Anything Meets Concept-Based Explanation [11.433807960637685]
Segment Anything Model (SAM) has been demonstrated as a powerful framework for performing precise and comprehensive instance segmentation.
We offer an effective and flexible concept-based explanation method, namely Explain Any Concept (EAC)
We thus propose a lightweight per-input equivalent (PIE) scheme, enabling efficient explanation with a surrogate model.
arXiv Detail & Related papers (2023-05-17T15:26:51Z) - Fine-Grained Visual Entailment [51.66881737644983]
We propose an extension of this task, where the goal is to predict the logical relationship of fine-grained knowledge elements within a piece of text to an image.
Unlike prior work, our method is inherently explainable and makes logical predictions at different levels of granularity.
We evaluate our method on a new dataset of manually annotated knowledge elements and show that our method achieves 68.18% accuracy at this challenging task.
arXiv Detail & Related papers (2022-03-29T16:09:38Z) - Modular Action Concept Grounding in Semantic Video Prediction [28.917125574895422]
We introduce the task of semantic action-conditional video prediction, which uses semantic action labels to describe interactions.
Inspired by the idea of Mixture of Experts, we embody each abstract label by a structured combination of various visual concept learners.
Our method is evaluated on two newly designed synthetic datasets and one real-world dataset.
arXiv Detail & Related papers (2020-11-23T04:12:22Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Learning Long-term Visual Dynamics with Region Proposal Interaction
Networks [75.06423516419862]
We build object representations that can capture inter-object and object-environment interactions over a long-range.
Thanks to the simple yet effective object representation, our approach outperforms prior methods by a significant margin.
arXiv Detail & Related papers (2020-08-05T17:48:00Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.