Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks
- URL: http://arxiv.org/abs/2401.04647v2
- Date: Wed, 3 Apr 2024 09:25:08 GMT
- Title: Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks
- Authors: Tanmay Garg, Deepika Vemuri, Vineeth N Balasubramanian,
- Abstract summary: This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
- Score: 24.45212348373868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks. Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training. During training, the explanation module is optimized to extract visual concepts from the classifier's latent representations, while the GAN-based module aims to discriminate images generated from concepts, from true images. This joint training scheme enables the model to implicitly align its internally learned concepts with human-interpretable visual properties. Comprehensive experiments demonstrate the robustness of our approach, while producing coherent concept activations. We analyse the learned concepts, showing their semantic concordance with object parts and visual attributes. We also study how perturbations in the adversarial training protocol impact both classification and concept acquisition. In summary, this work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations - a key enabler for developing trustworthy AI for real-world perception tasks.
Related papers
- Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
arXiv Detail & Related papers (2024-07-01T14:39:41Z) - LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
We introduce textttHi-CoDecomposition, a novel framework designed to enhance model interpretability through structured concept analysis.
Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process.
arXiv Detail & Related papers (2024-05-29T00:36:56Z) - CEIR: Concept-based Explainable Image Representation Learning [0.4198865250277024]
We introduce Concept-based Explainable Image Representation (CEIR) to derive high-quality representations without label dependency.
Our method exhibits state-of-the-art unsupervised clustering performance on benchmarks such as CIFAR10, CIFAR100, and STL10.
CEIR can seamlessly extract the related concept from open-world images without fine-tuning.
arXiv Detail & Related papers (2023-12-17T15:37:41Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Understanding Self-Supervised Pretraining with Part-Aware Representation
Learning [88.45460880824376]
We study the capability that self-supervised representation pretraining methods learn part-aware representations.
Results show that the fully-supervised model outperforms self-supervised models for object-level recognition.
arXiv Detail & Related papers (2023-01-27T18:58:42Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
Concept-based models (CBMs) combine high-performance and interpretability by acquiring and reasoning with a vocabulary of high-level concepts.
We provide a clear definition of interpretability in terms of alignment between the model's representation and an underlying data generation process.
We introduce GlanceNets, a new CBM that exploits techniques from disentangled representation learning and open-set recognition to achieve alignment.
arXiv Detail & Related papers (2022-05-31T08:53:53Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
We present a cross-modal Transformer-based framework, which jointly encodes video data and text labels for zero-shot action recognition (ZSAR)
Our model employs a conceptually new pipeline by which visual representations are learned in conjunction with visual-semantic associations in an end-to-end manner.
Experiment results show our model considerably improves upon the state of the arts in ZSAR, reaching encouraging top-1 accuracy on UCF101, HMDB51, and ActivityNet benchmark datasets.
arXiv Detail & Related papers (2022-05-03T17:39:27Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z) - Interactive Disentanglement: Learning Concepts by Interacting with their
Prototype Representations [15.284688801788912]
We show the advantages of prototype representations for understanding and revising the latent space of neural concept learners.
For this purpose, we introduce interactive Concept Swapping Networks (iCSNs)
iCSNs learn to bind conceptual information to specific prototype slots by swapping the latent representations of paired images.
arXiv Detail & Related papers (2021-12-04T09:25:40Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images.
We first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features.
We then come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words.
arXiv Detail & Related papers (2020-11-23T18:21:49Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.