From Matching to Generation: A Survey on Generative Information Retrieval
- URL: http://arxiv.org/abs/2404.14851v3
- Date: Thu, 16 May 2024 03:28:28 GMT
- Title: From Matching to Generation: A Survey on Generative Information Retrieval
- Authors: Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yuyao Zhang, Peitian Zhang, Yutao Zhu, Zhicheng Dou,
- Abstract summary: generative information retrieval (GenIR) has emerged as a novel paradigm, gaining increasing attention in recent years.
This paper aims to systematically review the latest research progress in GenIR.
- Score: 21.56093567336119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information Retrieval (IR) systems are crucial tools for users to access information, widely applied in scenarios like search engines, question answering, and recommendation systems. Traditional IR methods, based on similarity matching to return ranked lists of documents, have been reliable means of information acquisition, dominating the IR field for years. With the advancement of pre-trained language models, generative information retrieval (GenIR) has emerged as a novel paradigm, gaining increasing attention in recent years. Currently, research in GenIR can be categorized into two aspects: generative document retrieval (GR) and reliable response generation. GR leverages the generative model's parameters for memorizing documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing. Reliable response generation, on the other hand, employs language models to directly generate the information users seek, breaking the limitations of traditional IR in terms of document granularity and relevance matching, offering more flexibility, efficiency, and creativity, thus better meeting practical needs. This paper aims to systematically review the latest research progress in GenIR. We will summarize the advancements in GR regarding model training, document identifier, incremental learning, downstream tasks adaptation, multi-modal GR and generative recommendation, as well as progress in reliable response generation in aspects of internal knowledge memorization, external knowledge augmentation, generating response with citations and personal information assistant. We also review the evaluation, challenges and future prospects in GenIR systems. This review aims to offer a comprehensive reference for researchers in the GenIR field, encouraging further development in this area.
Related papers
- Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
This paper presents an experience report on the development of Retrieval Augmented Generation (RAG) systems using PDF documents as the primary data source.
The RAG architecture combines generative capabilities of Large Language Models (LLMs) with the precision of information retrieval.
The practical implications of this research lie in enhancing the reliability of generative AI systems in various sectors.
arXiv Detail & Related papers (2024-10-21T12:21:49Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - A Survey of Generative Information Retrieval [25.1249210843116]
Generative Retrieval (GR) is an emerging paradigm in information retrieval that leverages generative models to map queries to relevant document identifiers (DocIDs) without the need for traditional query processing or document reranking.
This survey provides a comprehensive overview of GR, highlighting key developments, indexing and retrieval strategies, and challenges.
arXiv Detail & Related papers (2024-06-03T10:59:33Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
This survey connects key advancements in recommender systems using Generative Models (Gen-RecSys)
It covers: interaction-driven generative models; the use of large language models (LLM) and textual data for natural language recommendation; and the integration of multimodal models for generating and processing images/videos in RS.
Our work highlights necessary paradigms for evaluating the impact and harm of Gen-RecSys and identifies open challenges.
arXiv Detail & Related papers (2024-03-31T06:57:57Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
Large Language Models (LLMs) showcase impressive capabilities but encounter challenges like hallucination.
Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases.
arXiv Detail & Related papers (2023-12-18T07:47:33Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
generative retrieval systems often directly return a grounded generated text as a response to a query.
Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval.
arXiv Detail & Related papers (2023-11-08T14:05:00Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Gen-IR @ SIGIR 2023: The First Workshop on Generative Information
Retrieval [32.45182506899627]
The goal of this workshop is to focus on Generative IR techniques like document retrieval and direct Grounded Answer Generation.
The format of the workshop is interactive, including roundtable and keynote sessions and tends to avoid the one-sided dialogue of a mini-conference.
arXiv Detail & Related papers (2023-06-05T13:56:36Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - GENIE: A Leaderboard for Human-in-the-Loop Evaluation of Text Generation [83.10599735938618]
Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository.
This work introduces GENIE, an human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks.
arXiv Detail & Related papers (2021-01-17T00:40:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.