Equivalence Relations in Quantum Theory: An Objective Account of Bases and Factorizations
- URL: http://arxiv.org/abs/2404.14891v1
- Date: Tue, 23 Apr 2024 10:17:49 GMT
- Title: Equivalence Relations in Quantum Theory: An Objective Account of Bases and Factorizations
- Authors: Christian de Ronde, Raimundo Fernandez Moujan, Cesar Massri,
- Abstract summary: In orthodox Standard Quantum Mechanics (SQM) bases and factorizations are considered to define quantum states and entanglement in relativistic terms.
We provide an invariant account of bases and factorizations which allows us to build a conceptual-operational bridge between formalism and quantum phenomena.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In orthodox Standard Quantum Mechanics (SQM) bases and factorizations are considered to define quantum states and entanglement in relativistic terms. While the choice of a basis (interpreted as a measurement context) defines a state incompatible to that same state in a different basis, the choice of a factorization (interpreted as the separability of systems into sub-systems) determines wether the same state is entangled or non-entangled. Of course, this perspectival relativism with respect to reference frames and factorizations precludes not only the widespread reference to quantum particles but more generally the possibility of any rational objective account of a state of affairs in general. In turn, this impossibility ends up justifying the instrumentalist (anti-realist) approach that contemporary quantum physics has followed since the establishment of SQM during the 1930s. In contraposition, in this work, taking as a standpoint the logos categorical approach to QM -- basically, Heisenberg's matrix formulation without Dirac's projection postulate -- we provide an invariant account of bases and factorizations which allows us to to build a conceptual-operational bridge between the mathematical formalism and quantum phenomena. In this context we are able to address the set of equivalence relations which allows us to determine what is actually the same in different bases and factorizations.
Related papers
- Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - Causal nonseparability and its implications for spatiotemporal relations [0.0]
This work investigates the philosophical implications of causal nonseparability, especially for the notion oftemporal relations.
A preliminary discussion will study the formal connection between quantum and causal nonseparability.
It will be shown that, depending on the interpretative framework, causal nonseparability suggests some kind of indeterminacy oftemporal relations.
arXiv Detail & Related papers (2022-07-20T15:32:46Z) - Connecting Commutativity and Classicality for Multi-Time Quantum
Processes [0.0]
We focus on the relationship between Kolmogorov consistency of measurement statistics and the commutativity of measurement operators.
On the other hand, commutativity of measurement operators is a structural property that holds in classical physics.
We detail their implications for memoryless multi-time quantum processes.
arXiv Detail & Related papers (2022-04-25T14:41:08Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Resource theory of quantum coherence with probabilistically
non-distinguishable pointers and corresponding wave-particle duality [0.6882042556551611]
We study the resource theory of quantum coherence with respect to an arbitrary set of quantum state vectors.
We identify a class of measures of the quantum coherence, and in particular establish a monotonicity property of the measures.
We report a relation between quantum coherence and path complementary distinguishability in a double-slit set-up.
arXiv Detail & Related papers (2020-05-17T16:56:31Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Quantum Incompatibility of a Physical Context [0.0]
We characterize quantum incompatibility as a resource encoded in a physical context, involving both the quantum state and observables.
We derive a measurement-incompatibility quantifier that is easily computable, admits a geometrical interpretation, and is maximum only if the eigenbases of the involved observables are mutually unbiased.
arXiv Detail & Related papers (2020-04-02T14:00:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.