Quantum Incompatibility of a Physical Context
- URL: http://arxiv.org/abs/2004.01008v2
- Date: Wed, 23 Dec 2020 16:56:07 GMT
- Title: Quantum Incompatibility of a Physical Context
- Authors: E. Martins, M. F. Savi, R. M. Angelo
- Abstract summary: We characterize quantum incompatibility as a resource encoded in a physical context, involving both the quantum state and observables.
We derive a measurement-incompatibility quantifier that is easily computable, admits a geometrical interpretation, and is maximum only if the eigenbases of the involved observables are mutually unbiased.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pivotal within quantum physics, the concept of quantum incompatibility is
generally related to algebraic aspects of the formalism, such as commutation
relations and unbiasedness of bases. Recently, the concept was identified as a
resource in tasks involving quantum state discrimination and quantum
programmability. Here we link quantum incompatibility with the amount of
information that can be extracted from a system upon successive measurements of
noncommuting observables, a scenario related to communication tasks. This
approach leads us to characterize incompatibility as a resource encoded in a
physical context, which involves both the quantum state and observables.
Moreover, starting with a measure of context incompatibility we derive a
measurement-incompatibility quantifier that is easily computable, admits a
geometrical interpretation, and is maximum only if the eigenbases of the
involved observables are mutually unbiased.
Related papers
- Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Witnessing Quantum Incompatibility Structures in High-Dimensional Multimeasurement Systems [10.275541065101345]
Quantum incompatibility is the phenomenon that some quantum measurements cannot be performed simultaneously.
We propose a modified quantum state discrimination protocol that decomposes complex compatibility structures into pairwise ones.
We experimentally demonstrate our results and connect them with quantum steering, quantum simulability and quantum communications.
arXiv Detail & Related papers (2023-06-21T09:12:51Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - On a foundational conceptual principle of quantum mechanics [0.0]
Anton Zeilinger's "foundational conceptual principle" for quantum mechanics is an idealistic principle, which should be replaced by a realistic principle of contextuality.
We argue that the assumption of non-locality is not required to explain quantum correlation.
In contrast to Zeilinger's proposed principle of quantization of information, the principle of contextuality explains it realistically.
arXiv Detail & Related papers (2022-03-26T11:24:14Z) - Incompatible measurements in quantum information science [0.0]
Joint measurability and incompatibility are reviewed from the perspective of quantum information science.
An overview on applications of incompatibility, such as in measurement uncertainty relations.
Emerging directions of research, such as a resource theory of incompatibility, as well as other concepts to grasp the nature of measurements in quantum mechanics are discussed.
arXiv Detail & Related papers (2021-12-13T16:48:28Z) - Quantifying incompatibility of quantum measurements through
non-commutativity [0.0]
Incompatible measurements are an important distinction between quantum mechanics and classical theories.
We explore a family of incompatibility measures based on non-commutativity.
We show that they satisfy some natural information-processing requirements.
We also consider the behavior of our measures under different types of compositions.
arXiv Detail & Related papers (2021-10-20T16:37:10Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.