G3R: Generating Rich and Fine-grained mmWave Radar Data from 2D Videos for Generalized Gesture Recognition
- URL: http://arxiv.org/abs/2404.14934v1
- Date: Tue, 23 Apr 2024 11:22:59 GMT
- Title: G3R: Generating Rich and Fine-grained mmWave Radar Data from 2D Videos for Generalized Gesture Recognition
- Authors: Kaikai Deng, Dong Zhao, Wenxin Zheng, Yue Ling, Kangwen Yin, Huadong Ma,
- Abstract summary: We develop a software pipeline that exploits wealthy 2D videos to generate realistic radar data.
It addresses the challenge of simulating diversified and fine-grained reflection properties of user gestures.
We implement and evaluate G3R using 2D videos from public data sources and self-collected real-world radar data.
- Score: 19.95047010486547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G3R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G3R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.
Related papers
- GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
Existing algorithms process radar data by projecting 3D points onto the image plane for pixel-level feature extraction.
We propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data.
We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
arXiv Detail & Related papers (2024-09-02T14:15:09Z) - SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
Radar raw data often contains excessive noise, whereas radar point clouds retain only limited information.
We introduce an adaptive subsampling method together with a tailored network architecture that exploits the sparsity patterns.
Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation.
arXiv Detail & Related papers (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - R2P: A Deep Learning Model from mmWave Radar to Point Cloud [14.803119281557995]
Radar to Point Cloud (R2P) is a deep learning model that generates smooth, dense, and highly accurate point cloud representation of a 3D object.
R2P replaces Stage 2 of our recently proposed 3DRIMR (3D Reconstruction and Imaging via mmWave Radar) system.
arXiv Detail & Related papers (2022-07-21T18:01:05Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - 3DRIMR: 3D Reconstruction and Imaging via mmWave Radar based on Deep
Learning [9.26903816093995]
mmWave radar has been shown as an effective sensing technique in low visibility, smoke, dusty, and dense fog environment.
We propose 3D Reconstruction and Imaging via mmWave Radar (3DRIMR), a deep learning based architecture that reconstructs 3D shape of an object in dense detailed point cloud format.
Our experiments have demonstrated 3DRIMR's effectiveness in reconstructing 3D objects, and its performance improvement over standard techniques.
arXiv Detail & Related papers (2021-08-05T21:24:57Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.