論文の概要: Streamlining the Image Stitching Pipeline: Integrating Fusion and Rectangling into a Unified Model
- arxiv url: http://arxiv.org/abs/2404.14951v1
- Date: Tue, 23 Apr 2024 11:53:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 14:21:26.300687
- Title: Streamlining the Image Stitching Pipeline: Integrating Fusion and Rectangling into a Unified Model
- Title(参考訳): 画像スティッチパイプラインの合理化:融合と整形を統一モデルに統合する
- Authors: Ziqi Xie,
- Abstract要約: 学習ベースの画像縫合技術は通常、登録、融合、整形という3つの異なる段階を含む。
本稿では, 融合および整流段階を統一モデルにマージする, 効率的なトレーニング不要画像縫合法である Simple and Robust Stitcher (SRStitcher) を提案する。
本手法は縫合パイプラインの簡易化だけでなく,誤登録エラーに対する耐故障性の向上にも寄与する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based image stitching techniques typically involve three distinct stages: registration, fusion, and rectangling. These stages are often performed sequentially, each trained independently, leading to potential cascading error propagation and complex parameter tuning challenges. In rethinking the mathematical modeling of the fusion and rectangling stages, we discovered that these processes can be effectively combined into a single, variety-intensity inpainting problem. Therefore, we propose the Simple and Robust Stitcher (SRStitcher), an efficient training-free image stitching method that merges the fusion and rectangling stages into a unified model. By employing the weighted mask and large-scale generative model, SRStitcher can solve the fusion and rectangling problems in a single inference, without additional training or fine-tuning of other models. Our method not only simplifies the stitching pipeline but also enhances fault tolerance towards misregistration errors. Extensive experiments demonstrate that SRStitcher outperforms state-of-the-art (SOTA) methods in both quantitative assessments and qualitative evaluations. The code is released at https://github.com/yayoyo66/SRStitcher
- Abstract(参考訳): 学習ベースの画像縫合技術は通常、登録、融合、整形という3つの異なる段階を含む。
これらの段階は、それぞれ独立に訓練され、カスケードエラーの伝播や複雑なパラメータチューニングの課題につながる。
融合および矩形化段階の数学的モデリングを再考すると、これらのプロセスは、効果的に1つの多角性塗装問題に結合できることが判明した。
そこで本稿では, 融合および整流段階を統一モデルにマージする, 効率的なトレーニング不要画像縫合法である, Simple and Robust Stitcher (SRStitcher)を提案する。
重み付きマスクと大規模生成モデルを用いることで、SRStitcherは他のモデルの追加トレーニングや微調整をすることなく、単一の推論で融合と整形を解くことができる。
本手法は縫合パイプラインの簡易化だけでなく,誤登録エラーに対する耐故障性の向上にも寄与する。
SRStitcherは、定量評価と定性評価の両方において、最先端(SOTA)手法より優れていることを示した。
コードはhttps://github.com/yayoyo66/SRStitcherで公開されている。
関連論文リスト
- Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
拡散モデルはコンテンツ合成と編集の分野に革命をもたらした。
最近のモデルでは、従来のUNetアーキテクチャをDiffusion Transformer (DiT)に置き換えている。
画像形成に欠かせないDiT内の「硝子層」を自動同定する手法を提案する。
次に、実画像編集を可能にするために、フローモデルのための改良された画像反転手法を提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:51Z) - Modification Takes Courage: Seamless Image Stitching via Reference-Driven Inpainting [0.17975553762582286]
現在の画像縫合法は、不均一な色相や大きな視差のような挑戦的なシナリオにおいて顕著な縫い目を生み出す。
本稿では, 画像の融合と整形を基準ベースインペイントモデルとして再構成する参照駆動型インペイント・スティッチャ (RDIStitcher) を提案する。
本稿では,Multimodal Large Language Models (MLLM) を用いた画像品質評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-15T16:05:01Z) - TexPainter: Generative Mesh Texturing with Multi-view Consistency [20.366302413005734]
本稿では,マルチビューの一貫性を実現するための新しい手法を提案する。
最適化に基づくカラーフュージョンを用いて、一貫性を強制し、勾配バックプロパゲーションにより遅延符号を間接的に修正する。
提案手法は, テクスチャの整合性と全体的な品質を, 競合する最先端技術と比較して向上させる。
論文 参考訳(メタデータ) (2024-05-17T18:41:36Z) - FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis [48.9652334528436]
本稿では、周波数領域解析の観点から、FouriScaleの革新的な学習不要アプローチを紹介する。
従来の拡散モデルの畳み込み層を,低域演算とともに拡張手法を組み込むことで置き換える。
提案手法は, 生成画像の構造的整合性と忠実度をバランスさせ, 任意のサイズ, 高解像度, 高品質な生成の驚くべき能力を実現する。
論文 参考訳(メタデータ) (2024-03-19T17:59:33Z) - ToddlerDiffusion: Interactive Structured Image Generation with Cascaded Schrödinger Bridge [63.00793292863]
ToddlerDiffusionは、RGB画像生成の複雑なタスクを、よりシンプルで解釈可能なステージに分解するための新しいアプローチである。
提案手法はToddler Diffusionと呼ばれ,それぞれが中間表現を生成する責務を担っている。
ToddlerDiffusionは、常に最先端のメソッドより優れています。
論文 参考訳(メタデータ) (2023-11-24T15:20:01Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
本稿では3つの動作と3次元知覚タスクのための統一的な定式化とモデルを提案する。
これら3つのタスクを、統一された高密度対応マッチング問題として定式化する。
我々のモデルは、モデルアーキテクチャとパラメータがタスク間で共有されているため、自然にクロスタスク転送を可能にします。
論文 参考訳(メタデータ) (2022-11-10T18:59:54Z) - Stochastic Planner-Actor-Critic for Unsupervised Deformable Image
Registration [33.72954116727303]
本稿では,大きく変形する医療画像の段階的登録を行う,新しい強化学習ベースのフレームワークを提案する。
本手法は2次元および3次元の医用画像データセットを用いて評価し,その一部は大きな変形を含む。
論文 参考訳(メタデータ) (2021-12-14T14:08:56Z) - Recurrent Multi-view Alignment Network for Unsupervised Surface
Registration [79.72086524370819]
非厳格な登録をエンドツーエンドで学習することは、本質的に高い自由度とラベル付きトレーニングデータの欠如により困難である。
我々は、いくつかの剛性変換のポイントワイドな組み合わせで、非剛性変換を表現することを提案する。
また,投影された多視点2次元深度画像上での3次元形状の類似度を計測する可微分損失関数も導入する。
論文 参考訳(メタデータ) (2020-11-24T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。