EarPass: Secure and Implicit Call Receiver Authentication Using Ear Acoustic Sensing
- URL: http://arxiv.org/abs/2404.15000v1
- Date: Tue, 23 Apr 2024 13:03:09 GMT
- Title: EarPass: Secure and Implicit Call Receiver Authentication Using Ear Acoustic Sensing
- Authors: Xiping Sun, Jing Chen, Kun He, Zhixiang He, Ruiying Du, Yebo Feng, Qingchuan Zhao, Cong Wu,
- Abstract summary: EarPass is a secure and implicit call receiver authentication scheme for smartphones.
It sends inaudible acoustic signals through the earpiece speaker to actively sense the outer ear.
It can achieve a balanced accuracy of 96.95% and an equal error rate of 1.53%.
- Score: 14.78387043362623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Private voice communication often contains sensitive information, making it critical to ensure that only authorized users have access to such calls. Unfortunately, current authentication mechanisms, such as PIN-based passwords, fingerprint recognition, and face recognition, fail to authenticate the call receiver, leaving a gap in security. To fill the gap, we present EarPass, a secure and implicit call receiver authentication scheme designed for smartphones. EarPass sends inaudible acoustic signals through the earpiece speaker to actively sense the outer ear, and records echoes using the top microphone. It focuses on extracting ear-related signals from echoes and performs spectrogram analysis in the magnitude and phase domains. To overcome posture and position variability, EarPass utilizes a learning-based feature extractor for extracting representative features, and a one-class classifier for authentication. EarPass does not increase any burdens on users or change users' call answering habits. Furthermore, it does not require extra devices but only uses the speaker and microphone on the smartphone. We conducted comprehensive experiments to evaluate EarPass's effectiveness and security. Our results show that EarPass can achieve a balanced accuracy of 96.95% and an equal error rate of 1.53%. Additionally, EarPass exhibits resilience against potential attacks, including zero-effort attacks and mimicry attacks.
Related papers
- EarCapAuth: Biometric Method for Earables Using Capacitive Sensing Eartips [5.958529344837165]
EarCapAuth is an authentication mechanism using 48 capacitive electrodes embedded into the soft silicone eartips of two earables.
For identification, EarCapAuth achieves 89.95%. This outperforms some earable biometric principles from related work.
In the future, EarCapAuth could be integrated into high-resolution brain sensing electrode tips.
arXiv Detail & Related papers (2024-11-07T12:35:02Z) - Preventing Radio Fingerprinting through Friendly Jamming [5.074726108522963]
Radio frequency fingerprinting enables a passive receiver to recognize and authenticate a transmitter without the need for cryptographic tools.
We examine the hostile usage of radio frequency fingerprinting, which facilitates the unauthorized tracking of wireless devices in the field by malicious entities.
We suggest a method to sanitize the transmitted signal of its fingerprint using a jammer, deployed on purpose to improve devices' anonymity on the channel.
arXiv Detail & Related papers (2024-07-11T09:01:46Z) - Eve Said Yes: AirBone Authentication for Head-Wearable Smart Voice Assistant [10.694874051404648]
Air and bone conduction (AC/BC) from the same vocalization are coupled (or concurrent) and user-level unique.
The legitimate user can defeat acoustic domain and even cross-domain spoofing samples with the proposed two-stage AirBone authentication.
arXiv Detail & Related papers (2023-09-26T19:03:45Z) - Locally Authenticated Privacy-preserving Voice Input [10.82818142802482]
Service providers must authenticate their users, although individuals may wish to maintain privacy.
Preserving privacy while performing authentication is challenging, particularly where adversaries can use biometric data to train transformation tools.
We introduce a secure, flexible privacy-preserving system to capture and store an on-device fingerprint of the users' raw signals.
arXiv Detail & Related papers (2022-05-27T14:56:01Z) - PASS: Protected Attribute Suppression System for Mitigating Bias in Face
Recognition [55.858374644761525]
Face recognition networks encode information about sensitive attributes while being trained for identity classification.
Existing bias mitigation approaches require end-to-end training and are unable to achieve high verification accuracy.
We present a descriptors-based adversarial de-biasing approach called Protected Attribute Suppression System ( PASS)'
Pass can be trained on top of descriptors obtained from any previously trained high-performing network to classify identities and simultaneously reduce encoding of sensitive attributes.
arXiv Detail & Related papers (2021-08-09T00:39:22Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - Multimodal Personal Ear Authentication Using Smartphones [0.0]
fingerprint authentication cannot be used when hands are wet, and face recognition cannot be used when a person is wearing a mask.
We examine a personal authentication system using the pinna as a new approach for biometric authentication on smartphones.
arXiv Detail & Related papers (2021-03-23T14:19:15Z) - FoolHD: Fooling speaker identification by Highly imperceptible
adversarial Disturbances [63.80959552818541]
We propose a white-box steganography-inspired adversarial attack that generates imperceptible perturbations against a speaker identification model.
Our approach, FoolHD, uses a Gated Convolutional Autoencoder that operates in the DCT domain and is trained with a multi-objective loss function.
We validate FoolHD with a 250-speaker identification x-vector network, trained using VoxCeleb, in terms of accuracy, success rate, and imperceptibility.
arXiv Detail & Related papers (2020-11-17T07:38:26Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
We propose a speaker de-identification system based on adversarial training and autoencoders.
Experimental results show that combining adversarial learning and autoencoders increase the equal error rate of a speaker verification system.
arXiv Detail & Related papers (2020-11-09T19:22:05Z) - Backdoor Attack against Speaker Verification [86.43395230456339]
We show that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data.
We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification.
arXiv Detail & Related papers (2020-10-22T11:10:08Z) - Keystroke Biometrics in Response to Fake News Propagation in a Global
Pandemic [77.79066811371978]
This work proposes and analyzes the use of keystroke biometrics for content de-anonymization.
Fake news have become a powerful tool to manipulate public opinion, especially during major events.
arXiv Detail & Related papers (2020-05-15T17:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.