Closed Loop Interactive Embodied Reasoning for Robot Manipulation
- URL: http://arxiv.org/abs/2404.15194v1
- Date: Tue, 23 Apr 2024 16:33:28 GMT
- Title: Closed Loop Interactive Embodied Reasoning for Robot Manipulation
- Authors: Michal Nazarczuk, Jan Kristof Behrens, Karla Stepanova, Matej Hoffmann, Krystian Mikolajczyk,
- Abstract summary: Embodied reasoning systems integrate robotic hardware and cognitive processes to perform complex tasks.
We introduce a new simulating environment that makes use of MuJoCo physics engine and high-quality Blender.
We propose a new benchmark composed of 10 classes of multi-step reasoning scenarios that require simultaneous visual and physical measurements.
- Score: 17.732550906162192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embodied reasoning systems integrate robotic hardware and cognitive processes to perform complex tasks typically in response to a natural language query about a specific physical environment. This usually involves changing the belief about the scene or physically interacting and changing the scene (e.g. 'Sort the objects from lightest to heaviest'). In order to facilitate the development of such systems we introduce a new simulating environment that makes use of MuJoCo physics engine and high-quality renderer Blender to provide realistic visual observations that are also accurate to the physical state of the scene. Together with the simulator we propose a new benchmark composed of 10 classes of multi-step reasoning scenarios that require simultaneous visual and physical measurements. Finally, we develop a new modular Closed Loop Interactive Reasoning (CLIER) approach that takes into account the measurements of non-visual object properties, changes in the scene caused by external disturbances as well as uncertain outcomes of robotic actions. We extensively evaluate our reasoning approach in simulation and in the real world manipulation tasks with a success rate above 76% and 64%, respectively.
Related papers
- Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
We present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics.
Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception.
We also simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling.
arXiv Detail & Related papers (2024-11-19T12:52:21Z) - Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.
We validate our approach across two tasks: object scooping and table air hockey.
Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - M3Bench: Benchmarking Whole-body Motion Generation for Mobile Manipulation in 3D Scenes [66.44171200767839]
We propose M3Bench, a new benchmark of whole-body motion generation for mobile manipulation tasks.
M3Bench requires an embodied agent to understand its configuration, environmental constraints and task objectives.
M3Bench features 30k object rearrangement tasks across 119 diverse scenes, providing expert demonstrations generated by our newly developed M3BenchMaker.
arXiv Detail & Related papers (2024-10-09T08:38:21Z) - QuestEnvSim: Environment-Aware Simulated Motion Tracking from Sparse
Sensors [69.75711933065378]
We show that headset and controller pose can generate realistic full-body poses even in highly constrained environments.
We discuss three features, the environment representation, the contact reward and scene randomization, crucial to the performance of the method.
arXiv Detail & Related papers (2023-06-09T04:40:38Z) - Inferring Articulated Rigid Body Dynamics from RGBD Video [18.154013621342266]
We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms.
Our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot.
arXiv Detail & Related papers (2022-03-20T08:19:02Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) is a platform for interactive multi-modal physical simulation.
TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments.
We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science.
arXiv Detail & Related papers (2020-07-09T17:33:27Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.