Source-free Domain Adaptation for Video Object Detection Under Adverse Image Conditions
- URL: http://arxiv.org/abs/2404.15252v1
- Date: Tue, 23 Apr 2024 17:39:06 GMT
- Title: Source-free Domain Adaptation for Video Object Detection Under Adverse Image Conditions
- Authors: Xingguang Zhang, Chih-Hsien Chou,
- Abstract summary: When deploying pre-trained video object detectors in real-world scenarios, the domain gap between training and testing data often leads to performance degradation.
We propose a simple yet effective source-free domain adaptation (SFDA) method for video object detection (VOD)
Specifically, we aim to improve the performance of the one-stage VOD method, YOLOV, under adverse image conditions, including noise, air turbulence, and haze.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When deploying pre-trained video object detectors in real-world scenarios, the domain gap between training and testing data caused by adverse image conditions often leads to performance degradation. Addressing this issue becomes particularly challenging when only the pre-trained model and degraded videos are available. Although various source-free domain adaptation (SFDA) methods have been proposed for single-frame object detectors, SFDA for video object detection (VOD) remains unexplored. Moreover, most unsupervised domain adaptation works for object detection rely on two-stage detectors, while SFDA for one-stage detectors, which are more vulnerable to fine-tuning, is not well addressed in the literature. In this paper, we propose Spatial-Temporal Alternate Refinement with Mean Teacher (STAR-MT), a simple yet effective SFDA method for VOD. Specifically, we aim to improve the performance of the one-stage VOD method, YOLOV, under adverse image conditions, including noise, air turbulence, and haze. Extensive experiments on the ImageNetVOD dataset and its degraded versions demonstrate that our method consistently improves video object detection performance in challenging imaging conditions, showcasing its potential for real-world applications.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
This paper introduces a novel method that learnstemporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs)
Our method achieves state-of-theart performance on three public benchmarks for the WSVADL task.
arXiv Detail & Related papers (2024-08-12T03:31:29Z) - Source-free Domain Adaptive Object Detection in Remote Sensing Images [11.19538606490404]
We propose a source-free object detection (SFOD) setting for RS images.
It aims to perform target domain adaptation using only the source pre-trained model.
Our method does not require access to source domain RS images.
arXiv Detail & Related papers (2024-01-31T15:32:44Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Object Detection in Aerial Images in Scarce Data Regimes [0.0]
Small objects, more numerous in aerial images, are the cause for the apparent performance gap between natural and aerial images.
We propose a scale-adaptive box similarity criterion, that improves the training and evaluation of FSOD methods.
We also contribute to generic FSOD with two distinct approaches based on metric learning and fine-tuning.
arXiv Detail & Related papers (2023-10-16T14:16:47Z) - SF-FSDA: Source-Free Few-Shot Domain Adaptive Object Detection with
Efficient Labeled Data Factory [94.11898696478683]
Domain adaptive object detection aims to leverage the knowledge learned from a labeled source domain to improve the performance on an unlabeled target domain.
We propose and investigate a more practical and challenging domain adaptive object detection problem under both source-free and few-shot conditions, named as SF-FSDA.
arXiv Detail & Related papers (2023-06-07T12:34:55Z) - AWADA: Attention-Weighted Adversarial Domain Adaptation for Object
Detection [0.0]
AWADA is an Attention-Weighted Adrialversa Domain Adaptation framework for creating a feedback loop between style-transformation and detection task.
We show that AWADA reaches state-of-the-art unsupervised domain adaptation object detection performance in the commonly used benchmarks for tasks such as synthetic-to-real, adverse weather and cross-camera adaptation.
arXiv Detail & Related papers (2022-08-31T07:20:25Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.