Object Detection in Aerial Images in Scarce Data Regimes
- URL: http://arxiv.org/abs/2310.10433v1
- Date: Mon, 16 Oct 2023 14:16:47 GMT
- Title: Object Detection in Aerial Images in Scarce Data Regimes
- Authors: Pierre Le Jeune
- Abstract summary: Small objects, more numerous in aerial images, are the cause for the apparent performance gap between natural and aerial images.
We propose a scale-adaptive box similarity criterion, that improves the training and evaluation of FSOD methods.
We also contribute to generic FSOD with two distinct approaches based on metric learning and fine-tuning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most contributions on Few-Shot Object Detection (FSOD) evaluate their methods
on natural images only, yet the transferability of the announced performance is
not guaranteed for applications on other kinds of images. We demonstrate this
with an in-depth analysis of existing FSOD methods on aerial images and
observed a large performance gap compared to natural images. Small objects,
more numerous in aerial images, are the cause for the apparent performance gap
between natural and aerial images. As a consequence, we improve FSOD
performance on small objects with a carefully designed attention mechanism. In
addition, we also propose a scale-adaptive box similarity criterion, that
improves the training and evaluation of FSOD methods, particularly for small
objects. We also contribute to generic FSOD with two distinct approaches based
on metric learning and fine-tuning. Impressive results are achieved with the
fine-tuning method, which encourages tackling more complex scenarios such as
Cross-Domain FSOD. We conduct preliminary experiments in this direction and
obtain promising results. Finally, we address the deployment of the detection
models inside COSE's systems. Detection must be done in real-time in extremely
large images (more than 100 megapixels), with limited computation power.
Leveraging existing optimization tools such as TensorRT, we successfully tackle
this engineering challenge.
Related papers
- SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
Small object detection in aerial imagery presents significant challenges in computer vision.
Traditional methods using transformer-based models often face limitations stemming from the lack of specialized databases.
This paper introduces two innovative approaches that significantly enhance detection and segmentation capabilities for small aerial objects.
arXiv Detail & Related papers (2024-05-02T19:47:08Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
Few-shot object detection (FSOD) relies on a large amount of labeled data for training.
Scale and orientation variations of objects in remote sensing images pose significant challenges to existing FSOD methods.
We propose integrating a feature pyramid network and utilizing prototype features to enhance query features.
arXiv Detail & Related papers (2023-03-13T02:21:38Z) - A Comparative Attention Framework for Better Few-Shot Object Detection
on Aerial Images [2.292003207440126]
Few-Shot Object Detection (FSOD) methods are mainly designed and evaluated on natural image datasets.
It is not clear whether the best methods for natural images are also the best for aerial images.
We propose a benchmarking framework that provides a flexible environment to implement and compare attention-based FSOD methods.
arXiv Detail & Related papers (2022-10-25T11:20:31Z) - ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object
Detection [24.085715205081385]
We denote size of an object as the number of pixels it covers in an image and size imbalance as the over-representation of certain sizes of objects in a dataset.
We propose a novel ARchitectUre-agnostic BAlanced Loss (ARUBA) that can be applied as a plugin on top of any object detection model.
arXiv Detail & Related papers (2022-10-10T11:28:16Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.