論文の概要: EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network
- arxiv url: http://arxiv.org/abs/2404.15289v2
- Date: Mon, 20 May 2024 08:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 22:21:29.296062
- Title: EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network
- Title(参考訳): EEGDiR:時間情報記憶のための脳波デノケーションネットワークとRetentive Networkによるグローバルモデリング
- Authors: Bin Wang, Fei Deng, Peifan Jiang,
- Abstract要約: 我々はRetnetを自然言語処理から脳波分解まで導入する。
Retnetの脳波への直接的適用は脳波信号の1次元の性質のため不可能である。
本稿では,1次元の脳波信号を2次元に変換してネットワーク入力として用いる信号埋め込み手法を提案する。
- 参考スコア(独自算出の注目度): 11.491355463353731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalogram (EEG) signals play a pivotal role in clinical medicine, brain research, and neurological disease studies. However, susceptibility to various physiological and environmental artifacts introduces noise in recorded EEG data, impeding accurate analysis of underlying brain activity. Denoising techniques are crucial to mitigate this challenge. Recent advancements in deep learningbased approaches exhibit substantial potential for enhancing the signal-to-noise ratio of EEG data compared to traditional methods. In the realm of large-scale language models (LLMs), the Retentive Network (Retnet) infrastructure, prevalent for some models, demonstrates robust feature extraction and global modeling capabilities. Recognizing the temporal similarities between EEG signals and natural language, we introduce the Retnet from natural language processing to EEG denoising. This integration presents a novel approach to EEG denoising, opening avenues for a profound understanding of brain activities and accurate diagnosis of neurological diseases. Nonetheless, direct application of Retnet to EEG denoising is unfeasible due to the one-dimensional nature of EEG signals, while natural language processing deals with two-dimensional data. To facilitate Retnet application to EEG denoising, we propose the signal embedding method, transforming one-dimensional EEG signals into two dimensions for use as network inputs. Experimental results validate the substantial improvement in denoising effectiveness achieved by the proposed method.
- Abstract(参考訳): 脳波信号は臨床医学、脳研究、神経疾患研究において重要な役割を担っている。
しかし、様々な生理的および環境的アーティファクトへの感受性は、記録された脳波データにノイズをもたらし、基礎となる脳活動の正確な分析を妨げる。
この課題を緩和するためには、Denoisingテクニックが不可欠だ。
近年の深層学習アプローチの進歩は、従来の手法と比較して脳波データの信号-雑音比を高める大きな可能性を示している。
大規模言語モデル(LLM)の領域では、いくつかのモデルで広く使われているRetentive Network(Retnet)インフラストラクチャが、堅牢な特徴抽出とグローバルモデリング機能を示している。
脳波信号と自然言語の時間的類似性を認識し、自然言語処理から脳波分解までRetnetを導入する。
この統合は、脳波の認知への新しいアプローチを示し、脳活動の深い理解と神経疾患の正確な診断のための道を開く。
それでも、Retnetの脳波への直接的適用は、脳波信号の1次元の性質のため不可能であり、自然言語処理は2次元データを扱う。
本稿では1次元の脳波信号を2次元に変換してネットワーク入力として使用する信号埋め込み手法を提案する。
実験結果から,提案手法によって達成されたデノナイズの有効性が著しく向上したことが確認された。
関連論文リスト
- ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
脳波(EEG)のアーチファクト除去は神経科学的な分析と脳-コンピュータインターフェース(BCI)のパフォーマンスに大きな影響を及ぼす。
本研究は,脳波信号の過渡ミリ秒スケール特性を順応的に捉えるため,トランスフォーマーアーキテクチャを用いた脳波復調モデルを提案する。
脳波信号処理においてARTが他の深層学習に基づくアーティファクト除去手法を上回ることが確認された。
論文 参考訳(メタデータ) (2024-09-11T15:05:40Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEGはRobust Inter-Subject Electrode implantation Variability iEEGの略である。
iEEGデコーダモデルを開発し,各患者に電極の座標を必要とせずに複数の患者のデータに適用した。
分析の結果, RISE-iEEG は HTNet や EEGNet よりも F1 よりも10%高い値を示した。
論文 参考訳(メタデータ) (2024-08-12T18:33:19Z) - A multi-artifact EEG denoising by frequency-based deep learning [5.231056284485742]
我々は周波数領域で動作する新しい脳波復調モデルを開発し、ノイズスペクトルの特徴に関する事前知識を活用している。
EEGdenoiseNetデータセットの性能評価は、提案モデルが時間およびスペクトルの指標に応じて最適な結果を得ることを示す。
論文 参考訳(メタデータ) (2023-10-26T12:01:47Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - EEGDnet: Fusing Non-Local and Local Self-Similarity for 1-D EEG Signal
Denoising with 2-D Transformer [8.295946712221845]
本稿では,2次元変換器EEGDnetを用いた新しい1次元脳波信号復調ネットワークを提案する。
トランスモジュールによる脳波信号の非局所的・局所的自己相似性を考慮する。
EEGDnetは定量化と定性的化の両方の観点から、はるかに優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-09T12:55:19Z) - Electroencephalogram Signal Processing with Independent Component
Analysis and Cognitive Stress Classification using Convolutional Neural
Networks [0.0]
本稿では,独立成分分析(ICA)を用いた脳波信号の相互相関について提案する。
記録データの結果から,脳波データの損失が少なくてEOG信号アーチファクトを除去できることが示唆された。
論文 参考訳(メタデータ) (2021-08-22T18:38:12Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。