DCAE-SR: Design of a Denoising Convolutional Autoencoder for reconstructing Electrocardiograms signals at Super Resolution
- URL: http://arxiv.org/abs/2404.15307v1
- Date: Fri, 29 Mar 2024 19:46:08 GMT
- Title: DCAE-SR: Design of a Denoising Convolutional Autoencoder for reconstructing Electrocardiograms signals at Super Resolution
- Authors: Ugo Lomoio, Pierangelo Veltri, Pietro Hiram Guzzi, Pietro Lio',
- Abstract summary: Electrocardiogram (ECG) signals play a pivotal role in cardiovascular diagnostics.
In inherent noise and limited resolution in ECG recordings can hinder accurate interpretation and diagnosis.
We propose a novel model for ECG super resolution (SR) that uses a DNAE to enhance temporal and frequency information inside ECG signals.
- Score: 5.368388861148683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram (ECG) signals play a pivotal role in cardiovascular diagnostics, providing essential information on the electrical activity of the heart. However, the inherent noise and limited resolution in ECG recordings can hinder accurate interpretation and diagnosis. In this paper, we propose a novel model for ECG super resolution (SR) that uses a DNAE to enhance temporal and frequency information inside ECG signals. Our approach addresses the limitations of traditional ECG signal processing techniques. Our model takes in input 5-second length ECG windows sampled at 50 Hz (very low resolution) and it is able to reconstruct a denoised super-resolution signal with an x10 upsampling rate (sampled at 500 Hz). We trained the proposed DCAE-SR on public available myocardial infraction ECG signals. Our method demonstrates superior performance in reconstructing high-resolution ECG signals from very low-resolution signals with a sampling rate of 50 Hz. We compared our results with the current deep-learning literature approaches for ECG super-resolution and some non-deep learning reproducible methods that can perform both super-resolution and denoising. We obtained current state-of-the-art performances in super-resolution of very low resolution ECG signals frequently corrupted by ECG artifacts. We were able to obtain a signal-to-noise ratio of 12.20 dB (outperforms previous 4.68 dB), mean squared error of 0.0044 (outperforms previous 0.0154) and root mean squared error of 4.86% (outperforms previous 12.40%). In conclusion, our DCAE-SR model offers a robust (to artefact presence), versatile and explainable solution to enhance the quality of ECG signals. This advancement holds promise in advancing the field of cardiovascular diagnostics, paving the way for improved patient care and high-quality clinical decisions
Related papers
- ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - In-ear ECG Signal Enhancement with Denoising Convolutional Autoencoders [11.901601030527862]
In-ear ECG recordings often suffer from significant noise due to their small amplitude and the presence of other physiological signals.
This study develops a denoising convolutional autoencoder to enhance ECG information from in-ear recordings, producing cleaner ECG outputs.
arXiv Detail & Related papers (2024-08-27T16:50:57Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Bayesian ECG reconstruction using denoising diffusion generative models [11.603515105957461]
We propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data.
Our results show that this innovative generative model can successfully generate realistic ECG signals.
arXiv Detail & Related papers (2023-12-18T15:56:21Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
Electrocardiogram (ECG) signals commonly suffer noise interference, such as baseline wander.
This paper proposes a novel ECG baseline wander and noise removal technology.
arXiv Detail & Related papers (2022-07-31T23:39:33Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
Continuous long-term monitoring of electrocardiography signals is crucial for the early detection of cardiac abnormalities such as arrhythmia.
Non-clinical ECG recordings often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, and other interferences.
We propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs)
arXiv Detail & Related papers (2022-01-29T19:47:17Z) - ECG Signal Super-resolution by Considering Reconstruction and Cardiac
Arrhythmias Classification Loss [0.0]
We propose a deep-learning-based ECG signal super-resolution framework (termed ESRNet) to recover compressed ECG signals.
Experimental results show that the proposed ESRNet framework can well reconstruct ECG signals from the 10-times compressed ones.
arXiv Detail & Related papers (2020-12-07T15:43:50Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.