Bayesian ECG reconstruction using denoising diffusion generative models
- URL: http://arxiv.org/abs/2401.05388v1
- Date: Mon, 18 Dec 2023 15:56:21 GMT
- Title: Bayesian ECG reconstruction using denoising diffusion generative models
- Authors: Gabriel V. Cardoso, Lisa Bedin, Josselin Duchateau, R\'emi Dubois,
Eric Moulines
- Abstract summary: We propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data.
Our results show that this innovative generative model can successfully generate realistic ECG signals.
- Score: 11.603515105957461
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we propose a denoising diffusion generative model (DDGM)
trained with healthy electrocardiogram (ECG) data that focuses on ECG
morphology and inter-lead dependence. Our results show that this innovative
generative model can successfully generate realistic ECG signals. Furthermore,
we explore the application of recent breakthroughs in solving linear inverse
Bayesian problems using DDGM. This approach enables the development of several
important clinical tools. These include the calculation of corrected QT
intervals (QTc), effective noise suppression of ECG signals, recovery of
missing ECG leads, and identification of anomalous readings, enabling
significant advances in cardiac health monitoring and diagnosis.
Related papers
- MECG-E: Mamba-based ECG Enhancer for Baseline Wander Removal [23.040957989796155]
We propose a novel ECG denoising model, namely Mamba-based ECG Enhancer (MECG-E)
MECG-E surpasses several well-known existing models across multiple metrics under different noise conditions.
It requires less inference time than state-of-the-art diffusion-based ECG denoisers.
arXiv Detail & Related papers (2024-09-27T15:22:44Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - In-ear ECG Signal Enhancement with Denoising Convolutional Autoencoders [11.901601030527862]
In-ear ECG recordings often suffer from significant noise due to their small amplitude and the presence of other physiological signals.
This study develops a denoising convolutional autoencoder to enhance ECG information from in-ear recordings, producing cleaner ECG outputs.
arXiv Detail & Related papers (2024-08-27T16:50:57Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Leveraging Statistical Shape Priors in GAN-based ECG Synthesis [3.3482093430607267]
We propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling.
Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals.
Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines.
arXiv Detail & Related papers (2022-10-22T18:06:11Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
Continuous long-term monitoring of electrocardiography signals is crucial for the early detection of cardiac abnormalities such as arrhythmia.
Non-clinical ECG recordings often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, and other interferences.
We propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs)
arXiv Detail & Related papers (2022-01-29T19:47:17Z) - Representing and Denoising Wearable ECG Recordings [12.378631176671773]
We develop a statistical model to simulate a structured noise process in ECGs derived from a wearable sensor.
We design a beat-to-beat representation that is conducive for analyzing variation, and devise a factor analysis-based method to denoise the ECG.
arXiv Detail & Related papers (2020-11-30T21:33:11Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.