Realtime Person Identification via Gait Analysis
- URL: http://arxiv.org/abs/2404.15312v1
- Date: Tue, 2 Apr 2024 18:15:06 GMT
- Title: Realtime Person Identification via Gait Analysis
- Authors: Shanmuga Venkatachalam, Harideep Nair, Prabhu Vellaisamy, Yongqi Zhou, Ziad Youssfi, John Paul Shen,
- Abstract summary: We propose a small CNN model with 4 layers that is very amenable for edge AI deployment and realtime gait recognition.
Our model achieves 96.7% accuracy and consumes only 5KB RAM with an inferencing time of 70 ms and 125mW power.
- Score: 1.3260363717086592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Each person has a unique gait, i.e., walking style, that can be used as a biometric for personal identification. Recent works have demonstrated effective gait recognition using deep neural networks, however most of these works predominantly focus on classification accuracy rather than model efficiency. In order to perform gait recognition using wearable devices on the edge, it is imperative to develop highly efficient low-power models that can be deployed on to small form-factor devices such as microcontrollers. In this paper, we propose a small CNN model with 4 layers that is very amenable for edge AI deployment and realtime gait recognition. This model was trained on a public gait dataset with 20 classes augmented with data collected by the authors, aggregating to 24 classes in total. Our model achieves 96.7% accuracy and consumes only 5KB RAM with an inferencing time of 70 ms and 125mW power, while running continuous inference on Arduino Nano 33 BLE Sense. We successfully demonstrated realtime identification of the authors with the model running on Arduino, thus underscoring the efficacy and providing a proof of feasiblity for deployment in practical systems in near future.
Related papers
- Your device may know you better than you know yourself -- continuous
authentication on novel dataset using machine learning [0.0]
This research aims to further understanding in the field of continuous authentication using behavioral biometrics.
We are contributing a novel dataset that encompasses the gesture data of 15 users playing Minecraft with a Samsung Tablet, each for a duration of 15 minutes.
arXiv Detail & Related papers (2024-03-06T16:22:49Z) - Human activity recognition using deep learning approaches and single
frame cnn and convolutional lstm [0.0]
We explore two deep learning-based approaches, namely single frame Convolutional Neural Networks (CNNs) and convolutional Long Short-Term Memory to recognise human actions from videos.
The two models were trained and evaluated on a benchmark action recognition dataset, UCF50, and another dataset that was created for the experimentation.
Though both models exhibit good accuracies, the single frame CNN model outperforms the Convolutional LSTM model by having an accuracy of 99.8% with the UCF50 dataset.
arXiv Detail & Related papers (2023-04-18T01:33:29Z) - Online Recognition of Incomplete Gesture Data to Interface Collaborative
Robots [0.0]
This paper introduces an HRI framework to classify large vocabularies of interwoven static gestures (SGs) and dynamic gestures (DGs) captured with wearable sensors.
The recognized gestures are used to teleoperate a robot in a collaborative process that consists of preparing a breakfast meal.
arXiv Detail & Related papers (2023-04-13T18:49:08Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
Transferring knowledge from task-agnostic pre-trained deep models for downstream tasks is an important topic in computer vision research.
In this study, we focus on transferring knowledge for video classification tasks.
We utilize the well-pretrained language model to generate good semantic target for efficient transferring learning.
arXiv Detail & Related papers (2022-07-04T10:00:47Z) - Sim-to-Real 6D Object Pose Estimation via Iterative Self-training for
Robotic Bin-picking [98.5984733963713]
We propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping.
We establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network.
This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data.
arXiv Detail & Related papers (2022-04-14T15:54:01Z) - Human Activity Recognition models using Limited Consumer Device Sensors
and Machine Learning [0.0]
Human activity recognition has grown in popularity with its increase of applications within daily lifestyles and medical environments.
This paper presents the findings of different models that are limited to train using sensor data from smartphones and smartwatches.
Results show promise for models trained strictly using limited sensor data collected from only smartphones and smartwatches coupled with traditional machine learning concepts and algorithms.
arXiv Detail & Related papers (2022-01-21T06:54:05Z) - WildGait: Learning Gait Representations from Raw Surveillance Streams [1.90365714903665]
Existing methods for gait recognition require cooperative gait scenarios, in which a single person is walking multiple times in a straight line in front of a camera.
We propose a novel weakly supervised learning framework, WildGait, which consists of training a Spatio-Temporal Graph Convolutional Network on a large number of automatically annotated skeleton sequences.
Our results show that, with fine-tuning, we surpass in terms of recognition accuracy the current state-of-the-art pose-based gait recognition solutions.
arXiv Detail & Related papers (2021-05-12T09:11:32Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - Making DensePose fast and light [78.49552144907513]
Existing neural network models capable of solving this task are heavily parameterized.
To enable Dense Pose inference on the end device with current models, one needs to support an expensive server-side infrastructure and have a stable internet connection.
In this work, we target the problem of redesigning the DensePose R-CNN model's architecture so that the final network retains most of its accuracy but becomes more light-weight and fast.
arXiv Detail & Related papers (2020-06-26T19:42:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.