A Survey on Multimodal Wearable Sensor-based Human Action Recognition
- URL: http://arxiv.org/abs/2404.15349v1
- Date: Sun, 14 Apr 2024 18:43:16 GMT
- Title: A Survey on Multimodal Wearable Sensor-based Human Action Recognition
- Authors: Jianyuan Ni, Hao Tang, Syed Tousiful Haque, Yan Yan, Anne H. H. Ngu,
- Abstract summary: Wearable Sensor-based Human Activity Recognition (WSHAR) emerges as a promising assistive technology to support the daily lives of older individuals.
Recent surveys in WSHAR have been limited, focusing either solely on deep learning approaches or on a single sensor modality.
In this study, we present a comprehensive survey on how to leverage multimodal learning to WSHAR domain for newcomers and researchers.
- Score: 15.054052500762559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of increased life expectancy and falling birth rates is resulting in an aging population. Wearable Sensor-based Human Activity Recognition (WSHAR) emerges as a promising assistive technology to support the daily lives of older individuals, unlocking vast potential for human-centric applications. However, recent surveys in WSHAR have been limited, focusing either solely on deep learning approaches or on a single sensor modality. In real life, our human interact with the world in a multi-sensory way, where diverse information sources are intricately processed and interpreted to accomplish a complex and unified sensing system. To give machines similar intelligence, multimodal machine learning, which merges data from various sources, has become a popular research area with recent advancements. In this study, we present a comprehensive survey from a novel perspective on how to leverage multimodal learning to WSHAR domain for newcomers and researchers. We begin by presenting the recent sensor modalities as well as deep learning approaches in HAR. Subsequently, we explore the techniques used in present multimodal systems for WSHAR. This includes inter-multimodal systems which utilize sensor modalities from both visual and non-visual systems and intra-multimodal systems that simply take modalities from non-visual systems. After that, we focus on current multimodal learning approaches that have applied to solve some of the challenges existing in WSHAR. Specifically, we make extra efforts by connecting the existing multimodal literature from other domains, such as computer vision and natural language processing, with current WSHAR area. Finally, we identify the corresponding challenges and potential research direction in current WSHAR area for further improvement.
Related papers
- A Comprehensive Methodological Survey of Human Activity Recognition Across Divers Data Modalities [2.916558661202724]
Human Activity Recognition (HAR) systems aim to understand human behaviour and assign a label to each action.
HAR can leverage various data modalities, such as RGB images and video, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, and radar signals.
This paper presents a comprehensive survey of the latest advancements in HAR from 2014 to 2024.
arXiv Detail & Related papers (2024-09-15T10:04:44Z) - SoK: Behind the Accuracy of Complex Human Activity Recognition Using Deep Learning [4.580983642743026]
Human Activity Recognition (HAR) is a well-studied field with research dating back to the 1980s.
In this paper, we comprehensively systematise factors leading to inaccuracy in complex HAR, such as data variety and model capacity.
arXiv Detail & Related papers (2024-04-25T10:07:56Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Overview of Human Activity Recognition Using Sensor Data [4.941233729756897]
Human activity recognition (HAR) is used in different applications including home and workplace automation, security and surveillance as well as healthcare.
We overview sensor-based HAR, discuss several important applications that rely on HAR, and highlight the most common machine learning methods that have been used for HAR.
Several challenges of HAR are explored that should be addressed to further improve the robustness of HAR.
arXiv Detail & Related papers (2023-09-12T10:37:42Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Lifelong Adaptive Machine Learning for Sensor-based Human Activity
Recognition Using Prototypical Networks [0.0]
Continual learning, also known as lifelong learning, is an emerging research topic that has been attracting increasing interest in the field of machine learning.
We build on recent advances in the area of continual machine learning and design a lifelong adaptive learning framework using Prototypical Networks, LAPNet-HAR.
LAPNet-HAR processes sensor-based data streams in a task-free data-incremental fashion and mitigates catastrophic forgetting using experience replay and continual prototype adaptation.
arXiv Detail & Related papers (2022-03-11T00:57:29Z) - Human Activity Recognition Using Tools of Convolutional Neural Networks:
A State of the Art Review, Data Sets, Challenges and Future Prospects [7.275302131211702]
This review is to summarize recent works based on a wide range of deep neural networks architecture, namely convolutional neural networks (CNNs) for human activity recognition.
The reviewed systems are clustered into four categories depending on the use of input devices like multimodal sensing devices, smartphones, radar, and vision devices.
arXiv Detail & Related papers (2022-02-02T18:52:13Z) - Families In Wild Multimedia: A Multimodal Database for Recognizing
Kinship [63.27052967981546]
We introduce the first publicly available multi-task MM kinship dataset.
To build FIW MM, we developed machinery to automatically collect, annotate, and prepare the data.
Results highlight edge cases to inspire future research with different areas of improvement.
arXiv Detail & Related papers (2020-07-28T22:36:57Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
We present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition.
We first introduce the multi-modality of the sensory data and provide information for public datasets.
We then propose a new taxonomy to structure the deep methods by challenges.
arXiv Detail & Related papers (2020-01-21T09:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.