Overview of Human Activity Recognition Using Sensor Data
- URL: http://arxiv.org/abs/2309.07170v1
- Date: Tue, 12 Sep 2023 10:37:42 GMT
- Title: Overview of Human Activity Recognition Using Sensor Data
- Authors: Rebeen Ali Hamad, Wai Lok Woo, Bo Wei and Longzhi Yang
- Abstract summary: Human activity recognition (HAR) is used in different applications including home and workplace automation, security and surveillance as well as healthcare.
We overview sensor-based HAR, discuss several important applications that rely on HAR, and highlight the most common machine learning methods that have been used for HAR.
Several challenges of HAR are explored that should be addressed to further improve the robustness of HAR.
- Score: 4.941233729756897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activity recognition (HAR) is an essential research field that has been
used in different applications including home and workplace automation,
security and surveillance as well as healthcare. Starting from conventional
machine learning methods to the recently developing deep learning techniques
and the Internet of things, significant contributions have been shown in the
HAR area in the last decade. Even though several review and survey studies have
been published, there is a lack of sensor-based HAR overview studies focusing
on summarising the usage of wearable sensors and smart home sensors data as
well as applications of HAR and deep learning techniques. Hence, we overview
sensor-based HAR, discuss several important applications that rely on HAR, and
highlight the most common machine learning methods that have been used for HAR.
Finally, several challenges of HAR are explored that should be addressed to
further improve the robustness of HAR.
Related papers
- Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - A Survey on Multimodal Wearable Sensor-based Human Action Recognition [15.054052500762559]
Wearable Sensor-based Human Activity Recognition (WSHAR) emerges as a promising assistive technology to support the daily lives of older individuals.
Recent surveys in WSHAR have been limited, focusing either solely on deep learning approaches or on a single sensor modality.
In this study, we present a comprehensive survey on how to leverage multimodal learning to WSHAR domain for newcomers and researchers.
arXiv Detail & Related papers (2024-04-14T18:43:16Z) - Transfer Learning in Human Activity Recognition: A Survey [0.13029741239874087]
Sensor-based human activity recognition (HAR) has been an active research area, owing to its applications in smart environments, assisted living, fitness, healthcare, etc.
Recently, deep learning based end-to-end training has resulted in state-of-the-art performance in domains such as computer vision and natural language.
We focus on these transfer learning methods in the application domains of smart home and wearables-based HAR.
arXiv Detail & Related papers (2024-01-18T18:12:35Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Low-cost Efficient Wireless Intelligent Sensor (LEWIS) for Engineering,
Research, and Education [72.2614468437919]
The vision of smart cities equipped with sensors informing decisions has not been realized to date.
Civil engineers lack of knowledge in sensor technology.
The electrical components and computer knowledge associated with sensors are still a challenge for civil engineers.
arXiv Detail & Related papers (2023-03-23T21:49:26Z) - Efficient Deep Clustering of Human Activities and How to Improve
Evaluation [53.08810276824894]
We present a new deep clustering model for human activity re-cog-ni-tion (HAR)
In this paper, we highlight several distinct problems with how deep HAR clustering models are evaluated.
We then discuss solutions to these problems, and suggest standard evaluation settings for future deep HAR clustering models.
arXiv Detail & Related papers (2022-09-17T14:12:42Z) - Deep Learning in Human Activity Recognition with Wearable Sensors: A
Review on Advances [8.642789007878479]
Deep learning has greatly pushed the boundaries of human activity recognition on mobile and wearable devices.
This paper systematically categorizes and summarizes existing work that introduces deep learning methods for wearables-based HAR.
We also present cutting-edge frontiers and future directions for deep learning--based HAR.
arXiv Detail & Related papers (2021-10-31T07:16:23Z) - Continual Learning in Sensor-based Human Activity Recognition: an
Empirical Benchmark Analysis [4.686889458553123]
Sensor-based human activity recognition (HAR) is a key enabler for many real-world applications in smart homes, personal healthcare, and urban planning.
How can a HAR system autonomously learn new activities over a long period of time without being re-engineered from scratch?
This problem is known as continual learning and has been particularly popular in the domain of computer vision.
arXiv Detail & Related papers (2021-04-19T15:38:22Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Human Activity Recognition using Inertial, Physiological and
Environmental Sensors: a Comprehensive Survey [3.1166345853612296]
This survey focuses on critical role of machine learning in developing HAR applications based on inertial sensors in conjunction with physiological and environmental sensors.
Har is considered as one of the most promising assistive technology tools to support elderly's daily life by monitoring their cognitive and physical function through daily activities.
arXiv Detail & Related papers (2020-04-19T11:32:35Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
We present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition.
We first introduce the multi-modality of the sensory data and provide information for public datasets.
We then propose a new taxonomy to structure the deep methods by challenges.
arXiv Detail & Related papers (2020-01-21T09:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.