Evaluating Fast Adaptability of Neural Networks for Brain-Computer Interface
- URL: http://arxiv.org/abs/2404.15350v1
- Date: Sun, 14 Apr 2024 22:36:53 GMT
- Title: Evaluating Fast Adaptability of Neural Networks for Brain-Computer Interface
- Authors: Anupam Sharma, Krishna Miyapuram,
- Abstract summary: We use motor movement and imaginary signals as input to Convolutional Neural Networks (CNN) based classifier for experiments.
We empirically show that layer-normalization can improve the adaptability of CNN-based EEG classifiers with not more than ten fine-tuning steps.
- Score: 0.23020018305241333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) classification is a versatile and portable technique for building non-invasive Brain-computer Interfaces (BCI). However, the classifiers that decode cognitive states from EEG brain data perform poorly when tested on newer domains, such as tasks or individuals absent during model training. Researchers have recently used complex strategies like Model-agnostic meta-learning (MAML) for domain adaptation. Nevertheless, there is a need for an evaluation strategy to evaluate the fast adaptability of the models, as this characteristic is essential for real-life BCI applications for quick calibration. We used motor movement and imaginary signals as input to Convolutional Neural Networks (CNN) based classifier for the experiments. Datasets with EEG signals typically have fewer examples and higher time resolution. Even though batch-normalization is preferred for Convolutional Neural Networks (CNN), we empirically show that layer-normalization can improve the adaptability of CNN-based EEG classifiers with not more than ten fine-tuning steps. In summary, the present work (i) proposes a simple strategy to evaluate fast adaptability, and (ii) empirically demonstrate fast adaptability across individuals as well as across tasks with simple transfer learning as compared to MAML approach.
Related papers
- CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive
Activity from EEG [0.0]
One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities.
We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning.
arXiv Detail & Related papers (2022-12-08T10:15:52Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
The brain computer interface (BCI) is a nonstimulatory direct and occasionally bidirectional communication link between the brain and a computer or an external device.
We present a deep neural network architecture specifically engineered to provide state-of-the-art performance in multiclass motor imagery classification.
arXiv Detail & Related papers (2022-08-04T09:00:34Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
Motor imagery (MI)-based brain-computer interface (BCI) systems are being increasingly employed to provide alternative means of communication and control.
accurately classifying MI from brain signals is essential to obtain reliable BCI systems.
Deep learning approaches have started to emerge as valid alternatives to standard machine learning techniques.
arXiv Detail & Related papers (2021-05-17T14:57:13Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.