論文の概要: Integrating Physiological Data with Large Language Models for Empathic Human-AI Interaction
- arxiv url: http://arxiv.org/abs/2404.15351v1
- Date: Sun, 14 Apr 2024 23:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 10:46:58.088385
- Title: Integrating Physiological Data with Large Language Models for Empathic Human-AI Interaction
- Title(参考訳): 共感型AIインタラクションのための大規模言語モデルと生理データの統合
- Authors: Poorvesh Dongre, Majid Behravan, Kunal Gupta, Mark Billinghurst, Denis Gračanin,
- Abstract要約: 本稿では,Large Language Models (LLMs) における共感の促進を生理的データと組み合わせることで検討する。
本稿では,心理学的状態を認識するための生理学的データを用いたディープラーニングモデルの開発を含む,生理学的コンピューティング手法を提案する。
- 参考スコア(独自算出の注目度): 19.259030493272345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores enhancing empathy in Large Language Models (LLMs) by integrating them with physiological data. We propose a physiological computing approach that includes developing deep learning models that use physiological data for recognizing psychological states and integrating the predicted states with LLMs for empathic interaction. We showcase the application of this approach in an Empathic LLM (EmLLM) chatbot for stress monitoring and control. We also discuss the results of a pilot study that evaluates this EmLLM chatbot based on its ability to accurately predict user stress, provide human-like responses, and assess the therapeutic alliance with the user.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) における共感の促進を生理的データと組み合わせることで検討する。
本研究では,心理学的状態を認識するための生理学的データを用いた深層学習モデルの開発と,共感的相互作用のためのLLMと予測状態の統合を含む,生理学的コンピューティング手法を提案する。
ストレスモニタリングと制御のためのEmLLM(Empathic LLM)チャットボットで,本手法の適用例を示す。
また, ユーザのストレスを正確に予測し, ヒューマンライクな応答を提供し, ユーザとのセラピーアライアンスを評価する能力に基づいて, このEmLLMチャットボットを評価するパイロットスタディの結果についても検討する。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Assessing Empathy in Large Language Models with Real-World Physician-Patient Interactions [9.327472312657392]
医療領域へのLarge Language Models(LLMs)の統合は、患者のケアとサポートを大幅に強化する可能性がある。
本研究は、ChatGPTが医師が通常提供するものよりも共感の度合いが高いかどうかを調査する。
マヨクリニックから患者メッセージと医師の回答の非特定データセットを収集し,ChatGPTを用いて代替応答を生成する。
論文 参考訳(メタデータ) (2024-05-26T01:58:57Z) - SeSaMe: A Framework to Simulate Self-Reported Ground Truth for Mental Health Sensing Studies [3.7398400615298466]
メンタルモデル (SeSaMe) は、デジタルメンタルヘルス研究における参加者の負担を軽減する枠組みである。
事前訓練された大規模言語モデル(LLM)を活用することで、SeSaMeは参加者の心理的尺度に対する反応のシミュレーションを可能にする。
本稿では,GPT-4を用いて1つのスケールで応答をシミュレートするSeSaMeの応用例を示す。
論文 参考訳(メタデータ) (2024-03-25T21:48:22Z) - Probabilistic emotion and sentiment modelling of patient-reported
experiences [0.04096453902709291]
本研究では,オンライン体験談話から患者感情をモデル化する新しい手法を提案する。
ケアオピニオンから患者が報告した経験を分析するために,メタデータネットワークトピックをモデル化する。
マルチラベル感情とバイナリ感情の両方を予測できる確率論的・文脈特異的感情推薦システムを開発した。
論文 参考訳(メタデータ) (2024-01-09T05:39:20Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Synthesizing Affective Neurophysiological Signals Using Generative
Models: A Review Paper [28.806992102323324]
マシンにおける感情的知性の統合は、人間とコンピュータの相互作用を前進させる重要なステップである。
公的な感情的データセットの不足は、課題である。
我々は、神経生理学的信号におけるこの問題に対処するための生成モデルの使用を強調した。
論文 参考訳(メタデータ) (2023-06-05T08:38:30Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - Embodied Synaptic Plasticity with Online Reinforcement learning [5.6006805285925445]
本稿では,これら2つの分野からオープンソースソフトウェアコンポーネントを統合することにより,計算神経科学とロボティクスの分野を連携させることに寄与する。
本稿では, オンライン強化学習(SPORE)によるシナプス塑性評価の枠組みについて述べる。
論文 参考訳(メタデータ) (2020-03-03T10:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。