Inertial Torsion Noise in Matter-Wave Interferometers for Gravity Experiments
- URL: http://arxiv.org/abs/2404.15455v1
- Date: Tue, 23 Apr 2024 18:57:24 GMT
- Title: Inertial Torsion Noise in Matter-Wave Interferometers for Gravity Experiments
- Authors: Meng-Zhi Wu, Marko Toroš, Sougato Bose, Anupam Mazumdar,
- Abstract summary: Matter-wave interferometry is susceptible to non-inertial noise sources, which can induce dephasing and a resulting loss of interferometric visibility.
Here, we focus on inertial torsion noise (ITN), which arises from the rotational motion of the experimental apparatus suspended by a thin wire and subject to random external torques.
We provide analytical expressions for the ITN noise starting from Langevin equations describing the experimental box in a thermal environment which can then be used together with the transfer function to obtain the dephasing factor.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matter-wave interferometry is susceptible to non-inertial noise sources, which can induce dephasing and a resulting loss of interferometric visibility. Here, we focus on inertial torsion noise (ITN), which arises from the rotational motion of the experimental apparatus suspended by a thin wire and subject to random external torques. We provide analytical expressions for the ITN noise starting from Langevin equations describing the experimental box in a thermal environment which can then be used together with the transfer function to obtain the dephasing factor. We verify the theoretical modelling and the validity of the approximations using Monte Carlo simulations obtaining good agreement between theory and numerics. As an application we estimate the size of the effects for the next-generation of interferometery experiments with femtogram particles, which could be used as the building block for entanglement-based tests of the quantum nature of gravity. We find that the ambient gas is a weak source of ITN, posing mild restrictions on the ambient pressure and temperature, and conclude with a discussion about the general ITN constrains by assuming a Langevin equation parameterized by three phenomenological parameters.
Related papers
- Proposal for a Bose-Einstein condensate based test of Born's rule using light-pulse atom interferometry [0.0]
We benchmark light-pulse atom interferometry with ultra-cold quantum gases to test the modulo-square hypothesis of Born's rule.
Our interferometric protocol is based on a combination of double Bragg and single Raman diffraction to induce multipath interference in Bose-Einstein condensates.
arXiv Detail & Related papers (2024-09-06T10:01:48Z) - Ambiguous Resonances in Multipulse Quantum Sensing with Nitrogen Vacancy Centers [0.2686836573610359]
We experimentally characterized three of these effects present in single nitrogen vacancy centers in diamond.
We also developed a numerical simulations model without rotating wave approximation, showing robust correlation to the experimental data.
Although focused with nitrogen vacancy centers and dynamical decoupling sequences, these results and the developed model can potentially be applied to other solid state spins and quantum sensing techniques.
arXiv Detail & Related papers (2024-07-12T16:35:36Z) - Essential role of destructive interference in the gravitationally
induced entanglement [0.0]
The present paper analyzes the gravitationally induced entanglement as a pure interference effect.
The non-maximally entangled state can be extremely effective for experimental testing.
arXiv Detail & Related papers (2024-01-09T12:24:32Z) - Bayesian inference for near-field interferometric tests of collapse models [0.0]
We consider a matterwave near-field Talbot interferometer and Continuous Spontaneous Localisation (CSL)
We compute the effect of decoherence mechanisms including pressure and blackbody radiation.
We show that in a MAQRO like experiment it is possible to reach masses of $sim109,textu$ and we quantify the bounds which can be placed on CSL.
arXiv Detail & Related papers (2023-10-09T14:44:14Z) - Flux noise in disordered spin systems [0.0]
Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause flux noise.
We propose an intermediate "second principles" method to describe general spin dissipation and flux noise in the quantum regime.
arXiv Detail & Related papers (2022-07-20T16:53:01Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Real-time estimation of the optically detected magnetic resonance shift
in diamond quantum thermometry [47.50219326456544]
We investigate the real-time estimation protocols for the frequency shift of optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in nanodiamonds (NDs)
Efficiently integrating multipoint ODMR measurements and ND particle tracking into fluorescence microscopy has recently demonstrated stable monitoring of the temperature inside living animals.
arXiv Detail & Related papers (2020-06-12T01:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.