Proposal for a Bose-Einstein condensate based test of Born's rule using light-pulse atom interferometry
- URL: http://arxiv.org/abs/2409.04163v1
- Date: Fri, 6 Sep 2024 10:01:48 GMT
- Title: Proposal for a Bose-Einstein condensate based test of Born's rule using light-pulse atom interferometry
- Authors: Simon Kanthak, Julia Pahl, Daniel Reiche, Markus Krutzik,
- Abstract summary: We benchmark light-pulse atom interferometry with ultra-cold quantum gases to test the modulo-square hypothesis of Born's rule.
Our interferometric protocol is based on a combination of double Bragg and single Raman diffraction to induce multipath interference in Bose-Einstein condensates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and numerically benchmark light-pulse atom interferometry with ultra-cold quantum gases as a platform to test the modulo-square hypothesis of Born's rule. Our interferometric protocol is based on a combination of double Bragg and single Raman diffraction to induce multipath interference in Bose-Einstein condensates (BECs) and block selected interferometer paths, respectively. In contrast to previous tests employing macroscopic material slits and blocking masks, optical diffraction lattices provide a high degree of control and avoid possible systematic errors like geometrical inaccuracies from manufacturing processes. In addition, sub-recoil expansion rates of delta-kick collimated BECs allow to prepare, distinguish and selectively address the external momentum states of the atoms. This further displays in close-to-unity diffraction fidelities favorable for both high-contrast interferometry and high extinction of the blocking masks. In return, non-linear phase shifts caused by repulsive atom-atom interactions need to be taken into account, which we fully reflect in our numerical simulations of the multipath interferometer. Assuming that the modulo-square rule holds, we examine the impact of experimental uncertainties in accordance with conventional BEC interferometer to provide an upper bound of $5.7\times10^{-3}$ $\left(1.8\times10^{-3}\right)$ on the statistical deviation of $100$ $\left(1000\right)$ iterations for a hypothetical third-order interference term.
Related papers
- Tweezer interferometry with NOON states [3.3972119795940525]
We study the feasibility of using condensed bosons in tweezer interferometry.
We consider a protocol for a tweezer-based NOON state interferometer that includes adiabatic splitting and merging of condensed bosons.
arXiv Detail & Related papers (2024-05-13T18:08:45Z) - An atom interferometer driven by a picosecond frequency comb [0.0]
We demonstrate a light-pulse atom interferometer based on the diffraction of free-falling atoms by a picosecond frequency-comb laser.
We coherently split and recombine wave packets of cold $87$Rb atoms by driving stimulated Raman transitions.
Results pave the way for extending light-pulse interferometry to transitions in other spectral regions and therefore to other species.
arXiv Detail & Related papers (2022-07-26T08:25:42Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Multimode Trapped Interferometer with Ideal Bose-Einstein Condensates [2.0290671957380604]
We experimentally demonstrate a multi-mode interferometer comprising a Bose-Einstein condensate of $39$K atoms trapped in a harmonic potential.
We find that the relative amplitudes of the momentum components at the interferometer output are sensitive to external forces.
arXiv Detail & Related papers (2021-06-14T06:33:17Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Delta-kick Squeezing [0.0]
We explore the possibility to overcome the standard quantum limit () in a free-fall atom interferometer using a Bose-Einstein condensate (BEC)
The generation of entanglement in the BEC is dramatically enhanced by amplifying the atom-atom interactions via the rapid action of an external trap.
We predict more than 30 dB of sensitivity for the variance, assuming realistic parameters and $106$ atoms.
arXiv Detail & Related papers (2021-03-19T16:33:30Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Integrable active atom interferometry [0.0]
We use Bethe Ansatz techniques to find exact eigenstates and eigenvalues of the Hamiltonian that models spin-changing collisions.
We study scaling properties and the interferometer's performance under the full Hamiltonian.
arXiv Detail & Related papers (2020-07-26T13:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.