論文の概要: Deep-learning Optical Flow Outperforms PIV in Obtaining Velocity Fields from Active Nematics
- arxiv url: http://arxiv.org/abs/2404.15497v2
- Date: Fri, 26 Apr 2024 19:04:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:29:36.993437
- Title: Deep-learning Optical Flow Outperforms PIV in Obtaining Velocity Fields from Active Nematics
- Title(参考訳): 能動ニューマティクスから速度場を得る場合の深層学習光学流のPIV特性
- Authors: Phu N. Tran, Sattvic Ray, Linnea Lemma, Yunrui Li, Reef Sweeney, Aparna Baskaran, Zvonimir Dogic, Pengyu Hong, Michael F. Hagan,
- Abstract要約: MTをベースとした能動ネマティクスの自発的な流れを異なるラベル付け条件下で定量化する光学フローの能力を評価する。
DLOFは高密度にラベル付けされた試料に対して、PIVよりもはるかに正確な速度場を生成する。
本研究は, 活性, ソフト, バイオ物理系の多種多様な流れを計測するための汎用ツールとしてDLOFを確立した。
- 参考スコア(独自算出の注目度): 2.0722018747867863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep convolutional neural networks. It uses those features to estimate the inter-frame motions of objects at the pixel level. In this article, we evaluate the ability of optical flow to quantify the spontaneous flows of MT-based active nematics under different labeling conditions. We compare DLOF against the commonly used technique, particle imaging velocimetry (PIV). We obtain flow velocity ground truths either by performing semi-automated particle tracking on samples with sparsely labeled filaments, or from passive tracer beads. We find that DLOF produces significantly more accurate velocity fields than PIV for densely labeled samples. We show that the breakdown of PIV arises because the algorithm cannot reliably distinguish contrast variations at high densities, particularly in directions parallel to the nematic director. DLOF overcomes this limitation. For sparsely labeled samples, DLOF and PIV produce results with similar accuracy, but DLOF gives higher-resolution fields. Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and biophysical systems.
- Abstract(参考訳): 深層学習に基づく光学フロー(DLOF)は、深層畳み込みニューラルネットワークで隣接するビデオフレームの特徴を抽出する。
それらの特徴を使って、ピクセルレベルでのオブジェクトのフレーム間の動きを推定する。
本稿では,異なるラベル付け条件下でのMT-based active nematicsの自然流れを定量化するための光フローの能力を評価する。
DLOFと一般的に使われている粒子画像速度測定法(PIV)を比較した。
フィラメントの少ない試料やパッシブトレーサビーズから半自動粒子追跡を行うことにより,流れ速度基底の真理を得る。
DLOF は高密度ラベル付き試料に対して PIV よりも精度の高い速度場を生成することがわかった。
PIVの分解は、アルゴリズムが高密度のコントラスト変動を、特にネマティックディレクタと平行な方向において確実に区別できないために生じることを示す。
DLOFはこの制限を克服する。
少ないラベル付きサンプルの場合、DLOF と PIV は同様の精度で結果を生成するが、DLOF は高分解能場を与える。
本研究は, 活性, ソフト, バイオ物理系の多種多様な流れを計測するための汎用ツールとしてDLOFを確立した。
関連論文リスト
- OCAI: Improving Optical Flow Estimation by Occlusion and Consistency Aware Interpolation [55.676358801492114]
本稿では,中間映像フレームと光フローを同時に生成することで,フレームのあいまいさを頑健に支援するOCAIを提案する。
我々は,Sintel や KITTI などの既存のベンチマークにおいて,優れた品質と光フロー精度を実証した。
論文 参考訳(メタデータ) (2024-03-26T20:23:48Z) - MVFlow: Deep Optical Flow Estimation of Compressed Videos with Motion
Vector Prior [16.633665275166706]
圧縮ビデオにおける光フロー推定の速度と精度を向上させるために運動ベクトルを用いた光フローモデルMVFlowを提案する。
実験の結果,既存のモデルと比較して提案したMVFlowの1.09倍の精度を示し,既存のモデルと同様の精度で保存時間を短縮した。
論文 参考訳(メタデータ) (2023-08-03T07:16:18Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Weakly-Supervised Optical Flow Estimation for Time-of-Flight [11.496094830445054]
再構成深度に直接光フローネットワークを監視できるトレーニングアルゴリズムを提案する。
本手法により,iToF深度画像における生のiToF測定値の整列と運動成果物の補償を可能にする。
論文 参考訳(メタデータ) (2022-10-11T09:47:23Z) - Sensor-Guided Optical Flow [53.295332513139925]
本稿では、未知の領域や未知の領域において、より優れた精度を実現するために、外部キューを用いた光フローネットワークを誘導するフレームワークを提案する。
能動センサからの深度測定と幾何および手作り光学フローアルゴリズムを組み合わせることで,これらがどのように得られるかを示す。
論文 参考訳(メタデータ) (2021-09-30T17:59:57Z) - Learning optical flow from still images [53.295332513139925]
我々は,容易に利用可能な単一の実画像から,高精度な光学的フローアノテーションを迅速かつ多量に生成するフレームワークを提案する。
既知の動きベクトルと回転角を持つ再構成された環境でカメラを仮想的に移動させる。
我々のデータでトレーニングすると、最先端の光フローネットワークは、実データを見るのに優れた一般化を実現する。
論文 参考訳(メタデータ) (2021-04-08T17:59:58Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
連続するフレーム間の動きの表現は、ビデオの理解を大いに促進することが証明されている。
効果的な光フロー解決器であるTV-L1法は、抽出した光フローをキャッシュするために時間と費用がかかる。
UF-TSN(UF-TSN)は、軽量な非監視光フロー推定器を組み込んだ、エンドツーエンドのアクション認識手法です。
論文 参考訳(メタデータ) (2021-03-05T04:14:32Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z) - Estimating Nonplanar Flow from 2D Motion-blurred Widefield Microscopy
Images via Deep Learning [7.6146285961466]
本研究では,単一テクスチャの広視野顕微鏡画像から,運動ボケの局所特性を用いた平面外粒子の移動を予測する手法を提案する。
この方法では、高速カメラや高強度光露光を必要とせずに、マイクロスコピストが試料の動的特性に関する洞察を得ることができる。
論文 参考訳(メタデータ) (2021-02-14T19:44:28Z) - Neural Particle Image Velocimetry [4.416484585765027]
本稿では,この問題に適応した畳み込みニューラルネットワーク,すなわちボリューム対応ネットワーク(VCN)を紹介する。
ネットワークは、合成データと実フローデータの両方を含むデータセット上で、徹底的にトレーニングされ、テストされる。
解析の結果,提案手法は現場における他の最先端手法と同等の精度を保ちながら,効率の向上を図っている。
論文 参考訳(メタデータ) (2021-01-28T12:03:39Z) - PAN: Towards Fast Action Recognition via Learning Persistence of
Appearance [60.75488333935592]
最先端のほとんどの手法は、動きの表現として密度の高い光の流れに大きく依存している。
本稿では,光学的フローに依存することで,高速な動作認識に光を当てる。
我々はPersistence of Outearance(PA)と呼ばれる新しい動きキューを設計する。
光学的流れとは対照的に,我々のPAは境界における運動情報の蒸留に重点を置いている。
論文 参考訳(メタデータ) (2020-08-08T07:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。