論文の概要: Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification
- arxiv url: http://arxiv.org/abs/2404.15585v1
- Date: Wed, 24 Apr 2024 01:37:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 14:53:37.641591
- Title: Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification
- Title(参考訳): 脳ストーム最適化に基づく糖尿病網膜症画像分類のための群学習
- Authors: Liang Qu, Cunze Wang, Yuhui Shi,
- Abstract要約: 本稿では,ブレインストーム最適化アルゴリズムを,BSO-SLという名称のSwarm学習フレームワークに統合する。
実際の糖尿病網膜症画像分類データセットを用いて,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 5.440545944342685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of deep learning techniques to medical problems has garnered widespread research interest in recent years, such as applying convolutional neural networks to medical image classification tasks. However, data in the medical field is often highly private, preventing different hospitals from sharing data to train an accurate model. Federated learning, as a privacy-preserving machine learning architecture, has shown promising performance in balancing data privacy and model utility by keeping private data on the client's side and using a central server to coordinate a set of clients for model training through aggregating their uploaded model parameters. Yet, this architecture heavily relies on a trusted third-party server, which is challenging to achieve in real life. Swarm learning, as a specialized decentralized federated learning architecture that does not require a central server, utilizes blockchain technology to enable direct parameter exchanges between clients. However, the mining of blocks requires significant computational resources, limiting its scalability. To address this issue, this paper integrates the brain storm optimization algorithm into the swarm learning framework, named BSO-SL. This approach clusters similar clients into different groups based on their model distributions. Additionally, leveraging the architecture of BSO, clients are given the probability to engage in collaborative learning both within their cluster and with clients outside their cluster, preventing the model from converging to local optima. The proposed method has been validated on a real-world diabetic retinopathy image classification dataset, and the experimental results demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): 近年, 医用画像分類タスクに畳み込みニューラルネットワークを適用するなど, 深層学習技術の応用が注目されている。
しかし、医療分野のデータはしばしば非常にプライベートであり、異なる病院が正確なモデルを訓練するためにデータを共有することを妨げている。
フェデレートラーニング(Federated Learning)は、プライバシを保存する機械学習アーキテクチャとして、クライアント側でプライベートデータを保持し、中央サーバを使用して、アップロードされたモデルパラメータを集約することで、モデルトレーニングのセットを調整することで、データのプライバシとモデルのユーティリティのバランスをとる上で、有望なパフォーマンスを示している。
しかし、このアーキテクチャは信頼できるサードパーティサーバーに大きく依存している。
Swarm Learningは、中央サーバーを必要としない特殊な分散化されたフェデレーション学習アーキテクチャとして、ブロックチェーン技術を使用して、クライアント間の直接的なパラメータ交換を可能にする。
しかし、ブロックの採掘にはかなりの計算資源が必要であり、その拡張性は制限される。
そこで本研究では,ブレインストーム最適化アルゴリズムを,BSO-SLという名称のSwarm学習フレームワークに統合する。
このアプローチは、類似のクライアントをモデル分布に基づいて異なるグループにクラスタ化する。
さらに、BSOのアーキテクチャを利用すると、クライアントはクラスタ内とクラスタ外のクライアントの両方で協調学習を行う確率が与えられ、モデルが収束してローカルな最適化ができない。
提案手法は, 現実の糖尿病網膜症画像分類データセットで検証され, 提案手法の有効性を実験的に実証した。
関連論文リスト
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
フェデレーション学習は、分散クライアントがローカルデータを使用して機械学習モデルを協調的にトレーニングするためのフレームワークである。
分散環境のための効率的パーソナライズされたフェデレーション学習アルゴリズムであるFedSPDを提案する。
低接続性ネットワークにおいてもFedSPDが正確なモデルを学ぶことを示す。
論文 参考訳(メタデータ) (2024-10-24T15:48:34Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - FedPNN: One-shot Federated Classification via Evolving Clustering Method
and Probabilistic Neural Network hybrid [4.241208172557663]
本稿では,プライバシ保護を指向した2段階のフェデレーション学習手法を提案する。
第1段階では、2つの異なる分布をノイズとして利用して合成データセットを生成する。
第2段階では,FedPNN(Federated Probabilistic Neural Network)が開発され,グローバルに共有する分類モデルの構築に利用されている。
論文 参考訳(メタデータ) (2023-04-09T03:23:37Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - FedHP: Heterogeneous Federated Learning with Privacy-preserving [0.0]
フェデレーション学習は分散機械学習環境であり、パラメータを交換するだけで、クライアントがプライベートデータを共有せずにコラボレーティブなトレーニングを完了できるようにする。
本稿では,事前学習されたモデルをバックボーンとして,完全に接続されたレイヤをヘッドとして構成する,新しいフェデレーション学習手法を提案する。
勾配空間に基づくパラメータではなく、クラスの埋め込みベクトルを共有することで、クライアントはプライベートデータにより適応でき、サーバとクライアント間の通信においてより効率的になります。
論文 参考訳(メタデータ) (2023-01-27T13:32:17Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
我々は、フェデレーション分類器平均化(FedClassAvg)と呼ばれる、新しいパーソナライズされたフェデレーション学習手法を提案する。
FedClassAvgは、特徴空間上の決定境界に関する合意として重みを集約する。
異質なパーソナライズされたフェデレーション学習タスクにおいて、現在の最先端のアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-25T08:32:08Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Architecture Agnostic Federated Learning for Neural Networks [19.813602191888837]
この研究は、FedHeNN(Federated Heterogeneous Neural Networks)フレームワークを導入している。
FedHeNNは、クライアント間の共通アーキテクチャを強制することなく、各クライアントがパーソナライズされたモデルを構築することを可能にする。
FedHeNNのキーとなるアイデアは、ピアクライアントから取得したインスタンスレベルの表現を使用して、各クライアントの同時トレーニングをガイドすることだ。
論文 参考訳(メタデータ) (2022-02-15T22:16:06Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
フェデレーション学習は、データをデバイス上でプライベートにしながら、複数のクライアントにわたるモデルの分散トレーニングを記述する。
本稿では,サーバがクライアント固有のモデルパラメータに対して事前分布のパラメータを提供する階層的潜在変数モデルとして,サーバが設定したフェデレーション学習プロセスについて考察する。
我々は,単純なガウス先行とよく知られた期待最大化(EM)アルゴリズムのハードバージョンを用いて,そのようなモデルの学習は,フェデレーション学習環境における最も一般的なアルゴリズムであるFedAvgに対応することを示す。
論文 参考訳(メタデータ) (2021-11-19T12:58:59Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。