論文の概要: Domain Adaptation for Learned Image Compression with Supervised Adapters
- arxiv url: http://arxiv.org/abs/2404.15591v1
- Date: Wed, 24 Apr 2024 01:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 14:53:37.630777
- Title: Domain Adaptation for Learned Image Compression with Supervised Adapters
- Title(参考訳): 教師付き適応器を用いた学習画像圧縮のための領域適応
- Authors: Alberto Presta, Gabriele Spadaro, Enzo Tartaglione, Attilio Fiandrotti, Marco Grangetto,
- Abstract要約: 我々は,デコーダにアダプタモジュールを挿入することで,事前学習されたモデルを複数のターゲットドメインに適用する問題に対処する。
ゲートネットワークは、ビットストリームの復号化時にアダプタからのコントリビューションを最適にブレンドするために重みを演算する。
提案手法を2つの最先端事前訓練モデルに対して実験的に検証し, 対象領域の速度歪み効率の改善を, ソース領域のペナルティを伴わずに観測した。
- 参考スコア(独自算出の注目度): 13.322199338779237
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In Learned Image Compression (LIC), a model is trained at encoding and decoding images sampled from a source domain, often outperforming traditional codecs on natural images; yet its performance may be far from optimal on images sampled from different domains. In this work, we tackle the problem of adapting a pre-trained model to multiple target domains by plugging into the decoder an adapter module for each of them, including the source one. Each adapter improves the decoder performance on a specific domain, without the model forgetting about the images seen at training time. A gate network computes the weights to optimally blend the contributions from the adapters when the bitstream is decoded. We experimentally validate our method over two state-of-the-art pre-trained models, observing improved rate-distortion efficiency on the target domains without penalties on the source domain. Furthermore, the gate's ability to find similarities with the learned target domains enables better encoding efficiency also for images outside them.
- Abstract(参考訳): Learned Image Compression (lic)では、モデルはソースドメインからサンプリングされた画像の符号化と復号を訓練し、多くの場合、自然画像の伝統的なコーデックよりも優れている。
本研究では,デコーダにアダプタモジュールを挿入することで,事前学習されたモデルを複数のターゲットドメインに適用する問題に取り組む。
各アダプタは、トレーニング時にイメージを忘れることなく、特定のドメイン上のデコーダのパフォーマンスを改善する。
ゲートネットワークは、ビットストリームの復号化時にアダプタからのコントリビューションを最適にブレンドするために重みを演算する。
提案手法を2つの最先端事前訓練モデルに対して実験的に検証し, 対象領域の速度歪み効率の改善を, ソース領域のペナルティを伴わずに観測した。
さらに、学習対象領域と類似性を見出す能力により、外部の画像に対しても符号化効率が向上する。
関連論文リスト
- Few-Shot Domain Adaptation for Learned Image Compression [24.37696296367332]
学習された画像圧縮(lic)は、最先端の速度歪み性能を達成した。
licモデルは通常、トレーニング外領域のイメージに適用した場合、大幅なパフォーマンス劣化に悩まされる。
プレトレーニングモデルにプラグイン・アンド・プレイアダプタを組み込むことにより, lic の領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T12:05:29Z) - Exploring Distortion Prior with Latent Diffusion Models for Remote Sensing Image Compression [9.742764207747697]
遅延拡散モデルに基づくリモートセンシング画像圧縮法(LDM-RSIC)を提案する。
第1段階では、自己エンコーダは、高品質な入力画像から予め学習する。
第2段階では、既存の学習ベース画像圧縮アルゴリズムの復号化画像に条件付LDMにより前者が生成される。
論文 参考訳(メタデータ) (2024-06-06T11:13:44Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
本稿では,変圧器を用いた可変レート画像圧縮のためのプログレッシブラーニングパラダイムを提案する。
視覚的プロンプトチューニングにインスパイアされた私たちは,エンコーダ側とデコーダ側でそれぞれ入力画像と隠蔽特徴のプロンプトを抽出するためにLPMを使用する。
提案モデルでは, 速度歪み特性の観点から現行の可変画像法よりも優れ, スクラッチから訓練した最先端の固定画像圧縮法にアプローチする。
論文 参考訳(メタデータ) (2023-11-23T08:29:32Z) - Dynamic Low-Rank Instance Adaptation for Universal Neural Image
Compression [33.92792778925365]
ドメイン外のデータセットで観測される速度歪みの減少に対処する低ランク適応手法を提案する。
提案手法は,多様な画像データセットにまたがる普遍性を示す。
論文 参考訳(メタデータ) (2023-08-15T12:17:46Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
空間特徴変換(SFT arXiv:1804.02815)に基づく多目的深部画像圧縮ネットワークを提案する。
本モデルは,任意の画素単位の品質マップによって制御される単一モデルを用いて,幅広い圧縮速度をカバーしている。
提案するフレームワークにより,様々なタスクに対してタスク対応の画像圧縮を行うことができる。
論文 参考訳(メタデータ) (2021-08-21T17:30:06Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
セグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付きソースドメインで訓練されたセグメンテーションモデルをラベル付きターゲットドメインに適応させることを目的としている。
既存の手法では、大きなドメインギャップに悩まされながら、ドメイン不変の特徴を学習しようとする。
本稿では,新しいDual Soft-Paste (DSP)法を提案する。
論文 参考訳(メタデータ) (2021-07-20T16:22:40Z) - How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs [25.622863999901874]
本稿では,学習した画像の符号化をサロゲートとして利用して,画像の符号化を最適化する方法を示す。
提案手法は,MS-SSIM歪みをデコードオーバーヘッドを伴わずに20%以上の速度改善で補正するために,従来の画像を再構成することができる。
論文 参考訳(メタデータ) (2020-12-03T12:34:51Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Swapping Autoencoder for Deep Image Manipulation [94.33114146172606]
画像操作に特化して設計されたディープモデルであるSwapping Autoencoderを提案する。
キーとなるアイデアは、2つの独立したコンポーネントで画像をエンコードし、交換された組み合わせをリアルなイメージにマップするように強制することだ。
複数のデータセットの実験により、我々のモデルはより良い結果が得られ、最近の生成モデルと比較してかなり効率が良いことが示されている。
論文 参考訳(メタデータ) (2020-07-01T17:59:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。