論文の概要: A Survey of Deep Long-Tail Classification Advancements
- arxiv url: http://arxiv.org/abs/2404.15593v1
- Date: Wed, 24 Apr 2024 01:59:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 14:53:37.625127
- Title: A Survey of Deep Long-Tail Classification Advancements
- Title(参考訳): 深部ロングテール分類の進歩に関する調査研究
- Authors: Charika de Alvis, Suranga Seneviratne,
- Abstract要約: 実世界の多くのデータ分布は、ほとんど均一ではない。代わりに、様々な種類の歪んだ、長い尾の分布がよく見られる。
これは機械学習にとって興味深い問題であり、ほとんどのアルゴリズムが均一に分散されたデータを想定したり、うまく機能する。
この問題は、大量のトレーニングデータを必要とする現在の最先端のディープラーニングモデルによってさらに悪化している。
- 参考スコア(独自算出の注目度): 1.6233132273470656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many data distributions in the real world are hardly uniform. Instead, skewed and long-tailed distributions of various kinds are commonly observed. This poses an interesting problem for machine learning, where most algorithms assume or work well with uniformly distributed data. The problem is further exacerbated by current state-of-the-art deep learning models requiring large volumes of training data. As such, learning from imbalanced data remains a challenging research problem and a problem that must be solved as we move towards more real-world applications of deep learning. In the context of class imbalance, state-of-the-art (SOTA) accuracies on standard benchmark datasets for classification typically fall less than 75%, even for less challenging datasets such as CIFAR100. Nonetheless, there has been progress in this niche area of deep learning. To this end, in this survey, we provide a taxonomy of various methods proposed for addressing the problem of long-tail classification, focusing on works that happened in the last few years under a single mathematical framework. We also discuss standard performance metrics, convergence studies, feature distribution and classifier analysis. We also provide a quantitative comparison of the performance of different SOTA methods and conclude the survey by discussing the remaining challenges and future research direction.
- Abstract(参考訳): 実世界の多くのデータ分布は、ほとんど均一ではない。
代わりに、様々な種類の歪んだ長い尾の分布がよく見られる。
これは機械学習にとって興味深い問題であり、ほとんどのアルゴリズムが均一に分散されたデータを想定したり、うまく機能する。
この問題は、大量のトレーニングデータを必要とする現在の最先端のディープラーニングモデルによってさらに悪化している。
このように、不均衡なデータから学ぶことは難しい研究問題であり、ディープラーニングのより現実的な応用に向けて進む際には、解決しなければならない課題である。
クラス不均衡の文脈では、標準ベンチマークデータセットに対するSOTA(State-of-the-art)の精度は通常、CIFAR100のようなより困難なデータセットであっても75%以下に低下する。
それでも、このニッチなディープラーニング分野には進歩があった。
そこで本研究では,過去数年間に1つの数学的枠組みの下で発生した研究に焦点をあて,長い尾の分類の問題に対処するために提案された様々な手法の分類法を提案する。
また、標準的な性能指標、収束研究、特徴分布、分類器分析についても論じる。
また、異なるSOTA法の性能を定量的に比較し、残りの課題と今後の研究方向性を議論して調査を締めくくる。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
時系列異常検出は、エンジニアリングプロセスにおいて重要な役割を果たす。
この調査では、オンラインとオフラインの区別とトレーニングと推論を行う新しい分類法を紹介した。
文献で使用される最も一般的なデータセットと評価指標、および詳細な分析を示す。
論文 参考訳(メタデータ) (2024-08-07T13:01:10Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
本稿では、欠落したモダリティに関する現在の研究を低データ体制に拡張する。
フルモダリティデータと十分なアノテートされたトレーニングサンプルを取得することは、しばしばコストがかかる。
本稿では,この2つの重要な問題に対処するために,検索強化したテキスト内学習を提案する。
論文 参考訳(メタデータ) (2024-03-14T14:19:48Z) - Can Tree Based Approaches Surpass Deep Learning in Anomaly Detection? A
Benchmarking Study [0.6291443816903801]
本稿では,機械学習に基づく異常検出アルゴリズムの多種多様さを評価する。
本論文は, 種々の異常検出アルゴリズムの非バイアス比較を行うことにより, 顕著に寄与する。
論文 参考訳(メタデータ) (2024-02-11T19:12:51Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Towards Federated Long-Tailed Learning [76.50892783088702]
データプライバシとクラス不均衡は、多くの機械学習タスクの例外ではなく、標準である。
最近の試みでは、広範にわたるプライベートデータから学習する問題に対処する一方で、長い尾を持つデータから学ぶことが試みられている。
本稿では,プライバシ保護フェデレーション学習(FL)フレームワークのコンテキスト下での長期的データ分散(LT)学習に焦点を当てた。
論文 参考訳(メタデータ) (2022-06-30T02:34:22Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - A Survey of Methods for Managing the Classification and Solution of Data
Imbalance Problem [0.0]
本稿では,クラス不均衡の問題を解くための機械学習手法における分類出力の改善の現状を理解するために,単一,ハイブリッド,アンサンブル方式設計のアーキテクチャに焦点を当てる。
本論文は,様々な手法および実験条件下での分類アルゴリズムの統計解析や,異なる研究論文で使用されるデータセットも含む。
論文 参考訳(メタデータ) (2020-12-22T08:03:22Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。