Model Poisoning Attacks to Federated Learning via Multi-Round Consistency
- URL: http://arxiv.org/abs/2404.15611v2
- Date: Thu, 6 Jun 2024 07:47:16 GMT
- Title: Model Poisoning Attacks to Federated Learning via Multi-Round Consistency
- Authors: Yueqi Xie, Minghong Fang, Neil Zhenqiang Gong,
- Abstract summary: We propose PoisonedFL, which enforces multi-round consistency among the malicious clients' model updates.
Our empirical evaluation on five benchmark datasets shows that PoisonedFL breaks eight state-of-the-art defenses and outperforms seven existing model poisoning attacks.
- Score: 42.132028389365075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model poisoning attacks are critical security threats to Federated Learning (FL). Existing model poisoning attacks suffer from two key limitations: 1) they achieve suboptimal effectiveness when defenses are deployed, and/or 2) they require knowledge of the model updates or local training data on genuine clients. In this work, we make a key observation that their suboptimal effectiveness arises from only leveraging model-update consistency among malicious clients within individual training rounds, making the attack effect self-cancel across training rounds. In light of this observation, we propose PoisonedFL, which enforces multi-round consistency among the malicious clients' model updates while not requiring any knowledge about the genuine clients. Our empirical evaluation on five benchmark datasets shows that PoisonedFL breaks eight state-of-the-art defenses and outperforms seven existing model poisoning attacks. Moreover, we also explore new defenses that are tailored to PoisonedFL, but our results show that we can still adapt PoisonedFL to break them. Our study shows that FL systems are considerably less robust than previously thought, underlining the urgency for the development of new defense mechanisms.
Related papers
- Poisoning with A Pill: Circumventing Detection in Federated Learning [33.915489514978084]
This paper proposes a generic and attack-agnostic augmentation approach designed to enhance the effectiveness and stealthiness of existing FL poisoning attacks against detection in FL.
Specifically, we employ a three-stage methodology that strategically constructs, generates, and injects poison into a pill during the FL training, named as pill construction, pill poisoning, and pill injection accordingly.
arXiv Detail & Related papers (2024-07-22T05:34:47Z) - Tracing Back the Malicious Clients in Poisoning Attacks to Federated Learning [37.44282882698999]
Poisoning attacks compromise the training phase of federated learning.
We propose FLForensics, the first poison-forensics method for FL.
We show that FLForensics can accurately distinguish between benign and malicious clients.
arXiv Detail & Related papers (2024-07-09T20:35:36Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - RECESS Vaccine for Federated Learning: Proactive Defense Against Model Poisoning Attacks [20.55681622921858]
Model poisoning attacks greatly jeopardize the application of federated learning (FL)
In this work, we propose a novel proactive defense named RECESS against model poisoning attacks.
Unlike previous methods that score each iteration, RECESS considers clients' performance correlation across multiple iterations to estimate the trust score.
arXiv Detail & Related papers (2023-10-09T06:09:01Z) - SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks [12.580891810557482]
Federated learning (FL) is attractive for pulling privacy-preserving distributed training data.
We propose a self-purified FL (SPFL) method that enables benign clients to exploit trusted historical features of locally purified model.
We experimentally demonstrate that SPFL outperforms state-of-the-art FL defenses against various poisoning attacks.
arXiv Detail & Related papers (2023-09-19T13:31:33Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - MPAF: Model Poisoning Attacks to Federated Learning based on Fake
Clients [51.973224448076614]
We propose the first Model Poisoning Attack based on Fake clients called MPAF.
MPAF can significantly decrease the test accuracy of the global model, even if classical defenses and norm clipping are adopted.
arXiv Detail & Related papers (2022-03-16T14:59:40Z) - FL-WBC: Enhancing Robustness against Model Poisoning Attacks in
Federated Learning from a Client Perspective [35.10520095377653]
Federated learning (FL) is a popular distributed learning framework that trains a global model through iterative communications between a central server and edge devices.
Recent works have demonstrated that FL is vulnerable to model poisoning attacks.
We propose a client-based defense, named White Blood Cell for Federated Learning (FL-WBC), which can mitigate model poisoning attacks.
arXiv Detail & Related papers (2021-10-26T17:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.