Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation
- URL: http://arxiv.org/abs/2404.15687v2
- Date: Mon, 15 Jul 2024 14:05:49 GMT
- Title: Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation
- Authors: Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,
- Abstract summary: Graph Neural Networks (GNNs) have emerged as a prominent code embedding approach for vulnerability detection.
We propose CFExplainer, a novel counterfactual explainer for GNN-based vulnerability detection.
- Score: 41.831831628421675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vulnerability detection is crucial for ensuring the security and reliability of software systems. Recently, Graph Neural Networks (GNNs) have emerged as a prominent code embedding approach for vulnerability detection, owing to their ability to capture the underlying semantic structure of source code. However, GNNs face significant challenges in explainability due to their inherently black-box nature. To this end, several factual reasoning-based explainers have been proposed. These explainers provide explanations for the predictions made by GNNs by analyzing the key features that contribute to the outcomes. We argue that these factual reasoning-based explanations cannot answer critical what-if questions: What would happen to the GNN's decision if we were to alter the code graph into alternative structures? Inspired by advancements of counterfactual reasoning in artificial intelligence, we propose CFExplainer, a novel counterfactual explainer for GNN-based vulnerability detection. Unlike factual reasoning-based explainers, CFExplainer seeks the minimal perturbation to the input code graph that leads to a change in the prediction, thereby addressing the what-if questions for vulnerability detection. We term this perturbation a counterfactual explanation, which can pinpoint the root causes of the detected vulnerability and furnish valuable insights for developers to undertake appropriate actions for fixing the vulnerability. Extensive experiments on four GNN-based vulnerability detection models demonstrate the effectiveness of CFExplainer over existing state-of-the-art factual reasoning-based explainers.
Related papers
- Explainable Graph Neural Networks Under Fire [69.15708723429307]
Graph neural networks (GNNs) usually lack interpretability due to their complex computational behavior and the abstract nature of graphs.
Most GNN explanation methods work in a post-hoc manner and provide explanations in the form of a small subset of important edges and/or nodes.
In this paper we demonstrate that these explanations can unfortunately not be trusted, as common GNN explanation methods turn out to be highly susceptible to adversarial perturbations.
arXiv Detail & Related papers (2024-06-10T16:09:16Z) - Coca: Improving and Explaining Graph Neural Network-Based Vulnerability
Detection Systems [16.005996517940964]
Graph Neural Network (GNN)-based vulnerability detection systems have achieved remarkable success.
The lack of explainability poses a critical challenge to deploy black-box models in security-related domains.
We propose Coca, a general framework aiming to enhance the robustness of existing GNN-based vulnerability detection models.
arXiv Detail & Related papers (2024-01-26T14:14:52Z) - Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks [32.345435955298825]
Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes.
A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions.
This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics.
arXiv Detail & Related papers (2023-10-03T06:25:14Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Faithful and Consistent Graph Neural Network Explanations with Rationale
Alignment [38.66324833510402]
Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions.
Various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions.
Several subgraphs can result in the same or similar outputs as the original graphs.
Applying them to explain weakly-performed GNNs would further amplify these issues.
arXiv Detail & Related papers (2023-01-07T06:33:35Z) - On Consistency in Graph Neural Network Interpretation [34.25952902469481]
Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions.
Various algorithms are proposed, but most of them formalize this task by searching the minimal subgraph.
We propose a simple yet effective countermeasure by aligning embeddings.
arXiv Detail & Related papers (2022-05-27T02:58:07Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
Explainability is crucial for probing graph neural networks (GNNs)
We propose a reinforcement learning agent, Reinforced Causal Explainer (RC-Explainer)
RC-Explainer generates faithful and concise explanations, and has a better power to unseen graphs.
arXiv Detail & Related papers (2022-04-23T09:13:25Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.