MambaTS: Improved Selective State Space Models for Long-term Time Series Forecasting
- URL: http://arxiv.org/abs/2405.16440v1
- Date: Sun, 26 May 2024 05:50:17 GMT
- Title: MambaTS: Improved Selective State Space Models for Long-term Time Series Forecasting
- Authors: Xiuding Cai, Yaoyao Zhu, Xueyao Wang, Yu Yao,
- Abstract summary: Mamba, based on selective state space models (SSMs), has emerged as a competitive alternative to Transformer.
We propose four targeted improvements, leading to MambaTS.
Experiments conducted on eight public datasets demonstrate that MambaTS achieves new state-of-the-art performance.
- Score: 12.08746904573603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Transformers have become the de-facto architecture for long-term sequence forecasting (LTSF), but faces challenges such as quadratic complexity and permutation invariant bias. A recent model, Mamba, based on selective state space models (SSMs), has emerged as a competitive alternative to Transformer, offering comparable performance with higher throughput and linear complexity related to sequence length. In this study, we analyze the limitations of current Mamba in LTSF and propose four targeted improvements, leading to MambaTS. We first introduce variable scan along time to arrange the historical information of all the variables together. We suggest that causal convolution in Mamba is not necessary for LTSF and propose the Temporal Mamba Block (TMB). We further incorporate a dropout mechanism for selective parameters of TMB to mitigate model overfitting. Moreover, we tackle the issue of variable scan order sensitivity by introducing variable permutation training. We further propose variable-aware scan along time to dynamically discover variable relationships during training and decode the optimal variable scan order by solving the shortest path visiting all nodes problem during inference. Extensive experiments conducted on eight public datasets demonstrate that MambaTS achieves new state-of-the-art performance.
Related papers
- Integration of Mamba and Transformer -- MAT for Long-Short Range Time Series Forecasting with Application to Weather Dynamics [7.745945701278489]
Long-short range time series forecasting is essential for predicting future trends and patterns over extended periods.
Deep learning models such as Transformers have made significant strides in advancing time series forecasting.
This article examines the advantages and disadvantages of both Mamba and Transformer models.
arXiv Detail & Related papers (2024-09-13T04:23:54Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - An Empirical Study of Mamba-based Language Models [69.74383762508805]
Selective state-space models (SSMs) like Mamba overcome some shortcomings of Transformers.
We present a direct comparison between 8B-context Mamba, Mamba-2, and Transformer models trained on the same datasets.
We find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks.
arXiv Detail & Related papers (2024-06-12T05:25:15Z) - Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting [5.166854384000439]
Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns.
Recently, a new state space model (SSM) named Mamba is proposed.
With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency.
arXiv Detail & Related papers (2024-04-24T09:45:48Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
Self-attention mechanism's computational cost limits its practicality for long sequences.
We propose a new method called LongVQ to compress the global abstraction as a length-fixed codebook.
LongVQ effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues.
arXiv Detail & Related papers (2024-04-17T08:26:34Z) - Is Mamba Effective for Time Series Forecasting? [30.85990093479062]
We propose a Mamba-based model named Simple-Mamba (S-Mamba) for time series forecasting.
Specifically, we tokenize the time points of each variate autonomously via a linear layer.
Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance.
arXiv Detail & Related papers (2024-03-17T08:50:44Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5 is an efficient variant for long-rangetemporal modeling.
It significantly outperforms Transformers and ConvNISTTM on a long horizon Moving-Lab experiment while training 3X faster than ConvLSTM and generating samples 400X faster than Transformers.
arXiv Detail & Related papers (2023-10-30T16:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.