Accelerating Cavity Fault Prediction Using Deep Learning at Jefferson Laboratory
- URL: http://arxiv.org/abs/2404.15829v1
- Date: Wed, 24 Apr 2024 12:05:20 GMT
- Title: Accelerating Cavity Fault Prediction Using Deep Learning at Jefferson Laboratory
- Authors: Monibor Rahman, Adam Carpenter, Khan Iftekharuddin, Chris Tennant,
- Abstract summary: Accelerating cavities are an integral part of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory.
In this study, we propose the use of a deep learning model to predict slowly developing cavity faults.
- Score: 0.4218593777811082
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accelerating cavities are an integral part of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory. When any of the over 400 cavities in CEBAF experiences a fault, it disrupts beam delivery to experimental user halls. In this study, we propose the use of a deep learning model to predict slowly developing cavity faults. By utilizing pre-fault signals, we train a LSTM-CNN binary classifier to distinguish between radio-frequency (RF) signals during normal operation and RF signals indicative of impending faults. We optimize the model by adjusting the fault confidence threshold and implementing a multiple consecutive window criterion to identify fault events, ensuring a low false positive rate. Results obtained from analysis of a real dataset collected from the accelerating cavities simulating a deployed scenario demonstrate the model's ability to identify normal signals with 99.99% accuracy and correctly predict 80% of slowly developing faults. Notably, these achievements were achieved in the context of a highly imbalanced dataset, and fault predictions were made several hundred milliseconds before the onset of the fault. Anticipating faults enables preemptive measures to improve operational efficiency by preventing or mitigating their occurrence.
Related papers
- A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset [1.148237645450678]
An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment.
Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL) and hybrid architectures for BRB faults.
This paper implements large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data.
arXiv Detail & Related papers (2025-01-07T12:40:11Z) - An AI-Driven Approach to Wind Turbine Bearing Fault Diagnosis from Acoustic Signals [10.64491245858684]
This study developed a deep learning model for the classification of bearing faults in wind turbine generators from acoustic signals.
A convolutional LSTM model was constructed and trained by using audio data from five predefined fault types for both training and validation.
The model exhibited outstanding accuracy on training samples and demonstrated excellent generalization ability during validation.
arXiv Detail & Related papers (2024-03-14T01:46:30Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Zero-Shot Motor Health Monitoring by Blind Domain Transition [17.664784126708742]
We propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics.
Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.
arXiv Detail & Related papers (2022-12-12T18:36:02Z) - Fault diagnosis for three-phase PWM rectifier based on deep feedforward
network with transient synthetic features [0.0]
A fault diagnosis method based on deep feedforward network with transient synthetic features is proposed.
The average fault diagnosis accuracy can reach 97.85% for transient synthetic fault data.
Online fault diagnosis experiments show that the method can accurately locate the fault IGBTs.
arXiv Detail & Related papers (2022-11-01T02:32:20Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
We present a framework for the reliability analysis of Conal Neural Networks (CNNs) via an error simulation engine.
These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults.
We show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t.FI, that only implements a limited set of error models.
arXiv Detail & Related papers (2022-06-04T19:45:02Z) - Machine Learning for Continuous Quantum Error Correction on
Superconducting Qubits [1.8249709209063887]
Continuous quantum error correction has been found to have certain advantages over discrete quantum error correction.
We propose a machine learning algorithm for continuous quantum error correction based on the use of a recurrent neural network.
arXiv Detail & Related papers (2021-10-20T05:13:37Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC) is a novel deep learning approach for designing emulators in scientific applications.
We show that LbC provides significant improvements in generalization error over widely-adopted loss function choices.
LbC achieves high-quality emulators even in small data regimes and more importantly, recovers the inherent noise structure without any explicit priors.
arXiv Detail & Related papers (2020-05-05T16:54:11Z) - Understanding and Mitigating the Tradeoff Between Robustness and
Accuracy [88.51943635427709]
Adversarial training augments the training set with perturbations to improve the robust error.
We show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor.
arXiv Detail & Related papers (2020-02-25T08:03:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.