A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset
- URL: http://arxiv.org/abs/2501.03746v1
- Date: Tue, 07 Jan 2025 12:40:11 GMT
- Title: A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset
- Authors: Usman Ali,
- Abstract summary: An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment.
Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL) and hybrid architectures for BRB faults.
This paper implements large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data.
- Score: 1.148237645450678
- License:
- Abstract: An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment. Notably, among the prevalent faults in IMs, a Broken Rotor Bar (BRB) fault is frequently encountered. Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL), and hybrid architectures for BRB faults. One limitation in the existing literature is the training of these architectures on relatively small datasets, risking overfitting when implementing such systems in industrial environments. This paper addresses this limitation by implementing large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data. Spectral images for training and testing are generated using a Short-Time Fourier Transform (STFT). The dataset comprises 57,500 images, with 47,500 used for training and 10,000 for testing. Remarkably, the ShuffleNetV2 model exhibited superior performance, in less computational cost as well as accurately classifying 98.856% of spectral images. To further enhance the visualization of harmonic sidebands resulting from broken bars, Fast Fourier Transform (FFT) is applied to current and vibration data. The paper also provides insights into the training and testing times for each model, contributing to a comprehensive understanding of the proposed fault diagnosis methodology. The findings of our research provide valuable insights into the performance and efficiency of different ML and DL models, offering a foundation for the development of robust fault diagnosis systems for induction motors in industrial settings.
Related papers
- An Improved Fault Diagnosis Strategy for Induction Motors Using Weighted Probability Ensemble Deep Learning [1.438310481395707]
Early detection of faults in induction motors is crucial for ensuring uninterrupted operations in industrial settings.
WPEDL methodology is tailored for effectively diagnosing induction motor faults using high-dimensional data extracted from vibration and current features.
Our proposed model outperforms other models, achieving an accuracy of 98.89%.
arXiv Detail & Related papers (2024-12-24T08:02:44Z) - DKDL-Net: A Lightweight Bearing Fault Detection Model via Decoupled Knowledge Distillation and Low-Rank Adaptation Fine-tuning [0.0]
This paper proposes a lightweight bearing fault diagnosis model DKDL-Net to solve these challenges.
The model is trained on the CWRU data set by decoupling knowledge distillation and low rank adaptive fine tuning.
Experiments show that DKDL-Net achieves 99.48% accuracy in computational complexity on the test set while maintaining model performance.
arXiv Detail & Related papers (2024-06-10T09:09:08Z) - Fault Diagnosis on Induction Motor using Machine Learning and Signal
Processing [0.0]
We present a study on the detection and identification of induction motor faults using machine learning and signal processing with Simulink.
We generated four faults in the induction motor: open circuit fault, short circuit fault, overload, and broken rotor bars.
On comparing the accuracy of the models on the test set, we concluded that the Decision Tree performed the best with an accuracy of about 92%.
arXiv Detail & Related papers (2024-01-27T14:12:42Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid
Framework for Rotating Machinery [2.580765958706854]
Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems.
Traditional Fault Detection and Diagnosis (FDD) frameworks get poor performances when dealing with real-world circumstances.
This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system.
arXiv Detail & Related papers (2022-02-09T01:09:59Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.