The genuinely multipartite nonlocality of graph states is model-dependent
- URL: http://arxiv.org/abs/2404.15861v1
- Date: Wed, 24 Apr 2024 13:24:38 GMT
- Title: The genuinely multipartite nonlocality of graph states is model-dependent
- Authors: Xavier Coiteux-Roy, Owidiusz Makuta, Fionnuala Curran, Remigiusz Augusiak, Marc-Olivier Renou,
- Abstract summary: Bell's theorem proves that some quantum state correlations can only be explained by bipartite non-classical resources.
Nonclassical resources involving more than two parties in a nontrivial way may be needed to account for some quantum correlations.
We show that cluster states do not have this third property, while GHZ states do.
- Score: 1.747623282473278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bell's theorem proves that some quantum state correlations can only be explained by bipartite non-classical resources. The notion of genuinely multipartite nonlocality (GMNL) was later introduced to conceptualize the fact that nonclassical resources involving more than two parties in a nontrivial way may be needed to account for some quantum correlations. In this letter, we first recall the contradictions inherent to the historical definition of GMNL. Second, we turn to one of its redefinitions, called Local-Operations-and-Shared-Randomness GMNL (LOSR-GMNL), proving that all caterpillar graph states (including cluster states) have this second property. Finally, we conceptualize a third, alternative definition, which we call Local-Operations-and-Neighbour-Communication GMNL (LONC-GMNL), that is adapted to situations in which short-range communication between some parties might occur. We show that cluster states do not have this third property, while GHZ states do. Beyond its technical content, our letter illustrates that rigorous conceptual work is needed before applying the concepts of genuinely multipartite nonlocality, genuine multipartite entanglement or entanglement depth to benchmark the nonclassicality of some experimentally-produced quantum system. We note that most experimental works still use witnesses based on the historical definitions of these notions, which fail to reject models based on bipartite resources.
Related papers
- Multipartite Embezzlement of Entanglement [44.99833362998488]
Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication.
We show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families.
We discuss our results in the context of quantum field theory and quantum many-body physics.
arXiv Detail & Related papers (2024-09-11T22:14:22Z) - Embezzlement of entanglement, quantum fields, and the classification of von Neumann algebras [41.94295877935867]
We study the quantum information theoretic task of embezzlement of entanglement in the setting of von Neumann algebras.
We quantify the performance of a given resource state by the worst-case error.
Our findings have implications for relativistic quantum field theory, where type III algebras naturally appear.
arXiv Detail & Related papers (2024-01-14T14:22:54Z) - Nonlocality activation in a photonic quantum network [0.44270590458998854]
Bell nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation.
We show that single copies of Bell-local states can give rise to nonlocality after being embedded into a quantum network of multiple parties.
Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications.
arXiv Detail & Related papers (2023-09-12T18:14:49Z) - Multipartite entanglement theory with entanglement-nonincreasing
operations [91.3755431537592]
We extend the resource theory of entanglement for multipartite systems beyond the standard framework of local operations and classical communication.
We demonstrate that in this adjusted framework, the transformation rates between multipartite states are fundamentally dictated by the bipartite entanglement entropies of the respective quantum states.
arXiv Detail & Related papers (2023-05-30T12:53:56Z) - A Hierarchy of Multipartite Nonlocality and Device-Independent Effect
Witnesses [0.0]
A multi-party behavior is genuinely multipartite nonlocal if it cannot be modeled by measurements on an underlying network of bipartite-only nonlocal resources.
Here, we study the full hierarchy of these new candidate definitions of GMNL in three-party quantum networks.
Surprisingly, we find that this behavior, as well as the others previously studied as device-independent witnesses of entangled measurements, can all be simulated at a higher echelon of the GMNL hierarchy.
arXiv Detail & Related papers (2023-01-28T03:51:28Z) - Resource characterisation of quantum entanglement and nonlocality in
multipartite settings [0.0]
This thesis studies two phenomena that are behind a lot of quantum technologies: entanglement and nonlocality.
We focus on multipartite systems, and ask what configurations of those systems are more useful than others.
arXiv Detail & Related papers (2022-06-23T17:23:54Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Any Physical Theory of Nature Must Be Boundlessly Multipartite Nonlocal [0.0]
We show that noisy N-partite GHZ quantum states as well as the 3-partite W quantum state can produce such correlations.
This proves, if the operational predictions of quantum theory are correct, that Nature's nonlocality must be boundlessly multipartite in any causal GPT.
arXiv Detail & Related papers (2021-05-19T20:05:55Z) - Unextendible entangled bases and more nonlocality with less entanglement [0.0]
We show that the phenomenon of more nonlocality with less entanglement can be observed for two qubits, while still being at the single-copy level.
The results are potentially useful for secure quantum communication technologies with an optimal amount of resources.
arXiv Detail & Related papers (2021-03-16T15:33:44Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.