Analysing Social Media Network Data with R: Semi-Automated Screening of
Users, Comments and Communication Patterns
- URL: http://arxiv.org/abs/2011.13327v1
- Date: Thu, 26 Nov 2020 14:52:01 GMT
- Title: Analysing Social Media Network Data with R: Semi-Automated Screening of
Users, Comments and Communication Patterns
- Authors: Dennis Klinkhammer
- Abstract summary: Communication on social media platforms is increasingly widespread across societies.
Fake news, hate speech and radicalizing elements are part of this modern form of communication.
A basic understanding of these mechanisms and communication patterns could help to counteract negative forms of communication.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Communication on social media platforms is not only culturally and
politically relevant, it is also increasingly widespread across societies.
Users not only communicate via social media platforms, but also search
specifically for information, disseminate it or post information themselves.
However, fake news, hate speech and even radicalizing elements are part of this
modern form of communication: Sometimes with far-reaching effects on
individuals and societies. A basic understanding of these mechanisms and
communication patterns could help to counteract negative forms of
communication, e.g. bullying among children or extreme political points of
view. To this end, a method will be presented in order to break down the
underlying communication patterns, to trace individual users and to inspect
their comments and range on social media platforms; Or to contrast them later
on via qualitative research. This approeach can identify particularly active
users with an accuracy of 100 percent, if the framing social networks as well
as the topics are taken into account. However, methodological as well as
counteracting approaches must be even more dynamic and flexible to ensure
sensitivity and specifity regarding users who spread hate speech, fake news and
radicalizing elements.
Related papers
- Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter [4.62503518282081]
Social media users drive the spread of misinformation online by sharing posts that include erroneous information or commenting on controversial topics.
This work explores how conversations around misinformation are mediated through language use.
arXiv Detail & Related papers (2024-04-24T15:37:12Z) - InfoPattern: Unveiling Information Propagation Patterns in Social Media [59.67008841974645]
InfoPattern centers on the interplay between language and human ideology.
The demo is capable of: (1) red teaming to simulate adversary responses from opposite ideology communities; (2) stance detection to identify the underlying political sentiments in each message; (3) information propagation graph discovery to reveal the evolution of claims across various communities over time.
arXiv Detail & Related papers (2023-11-27T09:12:35Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
Developing machine learning models to characterize political polarization on online social media presents significant challenges.
These challenges mainly stem from various factors such as the lack of annotated data, presence of noise in social media datasets, and the sheer volume of data.
We introduce two methods that leverage on news media bias and post content to label social media posts.
We demonstrate that current machine learning models can exhibit improved performance in predicting political orientation of social media posts.
arXiv Detail & Related papers (2023-11-21T03:34:20Z) - Countering Misinformation via Emotional Response Generation [15.383062216223971]
proliferation of misinformation on social media platforms (SMPs) poses a significant danger to public health, social cohesion and democracy.
Previous research has shown how social correction can be an effective way to curb misinformation.
We present VerMouth, the first large-scale dataset comprising roughly 12 thousand claim-response pairs.
arXiv Detail & Related papers (2023-11-17T15:37:18Z) - Entropy-rate as prediction method for newspapers and information
diffusion [0.0]
This paper aims to show how some popular topics on social networks can be used to predict online newspaper views.
Our work address the issue to explore in which entropy-rate, and through which dynamics, a suitable information diffusion performance is expected on social network and then on newspaper.
arXiv Detail & Related papers (2022-11-29T10:00:54Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z) - Breaking the Communities: Characterizing community changing users using
text mining and graph machine learning on Twitter [0.0]
We study users who break their community on Twitter using natural language processing techniques and graph machine learning algorithms.
We collected 9 million Twitter messages from 1.5 million users and constructed the retweet networks.
We present a machine learning framework for social media users classification which detects "community breakers"
arXiv Detail & Related papers (2020-08-24T23:44:51Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
This work provides a characterization of the interaction patterns within Gab around the COVID-19 topic.
We find that there are no strong statistical differences in the social response to questionable and reliable content.
Our results provide insights toward the understanding of coordinated inauthentic behavior and on the early-warning of information operation.
arXiv Detail & Related papers (2020-06-03T11:34:25Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.