A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset (MedIMeta)
- URL: http://arxiv.org/abs/2404.16000v1
- Date: Wed, 24 Apr 2024 17:27:57 GMT
- Title: A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset (MedIMeta)
- Authors: Stefano Woerner, Arthur Jaques, Christian F. Baumgartner,
- Abstract summary: We introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset.
MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks.
We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
- Score: 1.3641191496021943
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While the field of medical image analysis has undergone a transformative shift with the integration of machine learning techniques, the main challenge of these techniques is often the scarcity of large, diverse, and well-annotated datasets. Medical images vary in format, size, and other parameters and therefore require extensive preprocessing and standardization, for usage in machine learning. Addressing these challenges, we introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset. MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks, all of which are standardized to the same format and readily usable in PyTorch or other ML frameworks. We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
Related papers
- MedINST: Meta Dataset of Biomedical Instructions [47.7146913542186]
MedINST comprises 133 biomedical NLP tasks and over 7 million training samples.
We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
arXiv Detail & Related papers (2024-10-17T11:38:54Z) - A Generalist Learner for Multifaceted Medical Image Interpretation [14.75683710779724]
We propose MedVersa, a generalist learner that enables flexible learning and tasking for medical image interpretation.
By leveraging a large language model as a learnable orchestrator, MedVersa can learn from both visual and linguistic supervision, support multimodal inputs, and perform real-time task specification.
Our experiments demonstrate that MedVersa achieves state-of-the-art performance in 9 tasks, sometimes outperforming specialist counterparts by over 10%.
arXiv Detail & Related papers (2024-05-13T17:58:51Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
We propose a novel framework that tackles both discriminative and generative multimodal medical tasks.
The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning.
Our model can achieve performance superior to or on par with state-of-the-art baselines.
arXiv Detail & Related papers (2024-04-16T02:35:17Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation [38.61227663176952]
We propose a shift towards universal medical image segmentation, a paradigm aiming to build medical image understanding foundation models.
We develop Hermes, a novel context-prior learning approach to address the challenges of data heterogeneity and annotation differences in medical image segmentation.
arXiv Detail & Related papers (2023-06-04T17:39:08Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - A Data-scalable Transformer for Medical Image Segmentation:
Architecture, Model Efficiency, and Benchmark [45.543140413399506]
MedFormer is a data-scalable Transformer designed for generalizable 3D medical image segmentation.
Our approach incorporates three key elements: a desirable inductive bias, hierarchical modeling with linear-complexity attention, and multi-scale feature fusion.
arXiv Detail & Related papers (2022-02-28T22:59:42Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Universal Model for Multi-Domain Medical Image Retrieval [88.67940265012638]
Medical Image Retrieval (MIR) helps doctors quickly find similar patients' data.
MIR is becoming increasingly helpful due to the wide use of digital imaging modalities.
However, the popularity of various digital imaging modalities in hospitals also poses several challenges to MIR.
arXiv Detail & Related papers (2020-07-14T23:22:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.