論文の概要: Semantic Evolvement Enhanced Graph Autoencoder for Rumor Detection
- arxiv url: http://arxiv.org/abs/2404.16076v1
- Date: Wed, 24 Apr 2024 05:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:22:04.744699
- Title: Semantic Evolvement Enhanced Graph Autoencoder for Rumor Detection
- Title(参考訳): 地震検出のためのセマンティック進化強化グラフオートエンコーダ
- Authors: Xiang Tao, Liang Wang, Qiang Liu, Shu Wu, Liang Wang,
- Abstract要約: 本稿では,GARDモデルのための新しい意味進化拡張グラフオートエンコーダを提案する。
このモデルは、局所的な意味変化とグローバルな意味進化情報をキャプチャすることで、事象の意味進化情報を学ぶ。
噂や非噂の異なるパターンを学習するモデルの能力を高めるために,モデルの性能をさらに向上させるレギュレータを導入する。
- 参考スコア(独自算出の注目度): 25.03964361177406
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the rapid spread of rumors on social media, rumor detection has become an extremely important challenge. Recently, numerous rumor detection models which utilize textual information and the propagation structure of events have been proposed. However, these methods overlook the importance of semantic evolvement information of event in propagation process, which is often challenging to be truly learned in supervised training paradigms and traditional rumor detection methods. To address this issue, we propose a novel semantic evolvement enhanced Graph Autoencoder for Rumor Detection (GARD) model in this paper. The model learns semantic evolvement information of events by capturing local semantic changes and global semantic evolvement information through specific graph autoencoder and reconstruction strategies. By combining semantic evolvement information and propagation structure information, the model achieves a comprehensive understanding of event propagation and perform accurate and robust detection, while also detecting rumors earlier by capturing semantic evolvement information in the early stages. Moreover, in order to enhance the model's ability to learn the distinct patterns of rumors and non-rumors, we introduce a uniformity regularizer to further improve the model's performance. Experimental results on three public benchmark datasets confirm the superiority of our GARD method over the state-of-the-art approaches in both overall performance and early rumor detection.
- Abstract(参考訳): ソーシャルメディア上の噂が急速に広まる中、噂検出は極めて重要な課題となっている。
近年,テキスト情報とイベントの伝播構造を利用した多数の噂検出モデルが提案されている。
しかし,これらの手法は伝播過程における事象の意味的進化情報の重要性を軽視し,教師付き訓練パラダイムや従来の噂検出手法で真に学ぶことはしばしば困難である。
本稿では,新しい意味進化拡張グラフオートエンコーダ(GARD)モデルを提案する。
このモデルは、特定のグラフオートエンコーダと再構成戦略を通じて、局所的な意味変化とグローバルな意味進化情報をキャプチャすることで、事象の意味進化情報を学ぶ。
セマンティック進化情報と伝搬構造情報を組み合わせることで、イベント伝播の包括的理解を達成し、正確かつ堅牢な検出を行うとともに、セマンティック進化情報を早期にキャプチャすることで、より早い段階での噂を検出する。
さらに、噂や非噂の異なるパターンを学習するモデルの能力を高めるために、モデルの性能をさらに向上させる一様正則化手法を導入する。
3つの公開ベンチマークデータセットによる実験結果から、GARD法が全体的な性能と早期噂検出の両方において最先端のアプローチよりも優れていることが確認された。
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - A Unified Contrastive Transfer Framework with Propagation Structure for
Boosting Low-Resource Rumor Detection [11.201348902221257]
既存の噂検出アルゴリズムは 昨日のニュースで 有望な性能を見せています
十分なトレーニングデータや事前の専門家知識が欠如しているため、予期せぬ出来事に関する噂を見つけるのが苦手である。
本稿では,十分な情報源から得られた特徴を,少数のアノテーションで少ない資料に適応させることで,噂を検出するための一貫したコントラスト転送フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-04T03:13:03Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Zero-Shot Rumor Detection with Propagation Structure via Prompt Learning [24.72097408129496]
従来の研究では、アノテートされたリソースが不足しているため、少数言語で提示される噂は見つからないことが判明した。
本稿では,異なるドメインで発生する噂や,異なる言語で提示される噂を検出するための,素早い学習に基づく新しいフレームワークを提案する。
提案手法は最先端手法よりも優れた性能を実現し,早期に噂を検出する能力に優れる。
論文 参考訳(メタデータ) (2022-12-02T12:04:48Z) - Region-enhanced Deep Graph Convolutional Networks for Rumor Detection [6.5165993338043995]
噂の伝播特性を高める新しい領域強化深部グラフ畳み込みネットワーク(RDGCN)を提案する。
Twitter15とTwitter16の実験では、提案されたモデルは、噂検出と初期の噂検出のベースラインアプローチよりも優れた性能を示している。
論文 参考訳(メタデータ) (2022-06-15T17:00:11Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。