Relative state-counting for semiclassical black holes
- URL: http://arxiv.org/abs/2404.16098v1
- Date: Wed, 24 Apr 2024 18:00:01 GMT
- Title: Relative state-counting for semiclassical black holes
- Authors: Chris Akers, Jonathan Sorce,
- Abstract summary: entropy differences between certain states of perturbative quantum gravity can be computed without specifying an ultraviolet completion.
This is analogous to the situation in classical statistical mechanics, where entropy differences are defined but absolute entropy is not.
We construct a family of perturbative black hole states for which the entropy difference can be interpreted as a relative counting of states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been shown that entropy differences between certain states of perturbative quantum gravity can be computed without specifying an ultraviolet completion. This is analogous to the situation in classical statistical mechanics, where entropy differences are defined but absolute entropy is not. Unlike in classical statistical mechanics, however, the entropy differences computed in perturbative quantum gravity do not have a clear physical interpretation. Here we construct a family of perturbative black hole states for which the entropy difference can be interpreted as a relative counting of states. Conceptually, this paper begins with the algebra of mass fluctuations around a fixed black hole background, and points out that while this is a type I algebra, it is not a factor and therefore has no canonical definition of entropy. As in previous work, coupling the mass fluctuations to quantum matter embeds the mass algebra within a type II factor, in which entropy differences (but not absolute entropies) are well defined. It is then shown that for microcanonical wavefunctions of mass fluctuation, the type II entropy difference equals the logarithm of the dimension of the extra Hilbert space that is needed to map one microcanonical window to another using gauge-invariant unitaries. The paper closes with comments on type II entropy difference in a more general class of states, where the von Neumann entropy difference does not have a physical interpretation, but "one-shot" entropy differences do.
Related papers
- Thermodynamic uncertainty relation for quantum entropy production [0.0]
In quantum thermodynamics, entropy production is usually defined in terms of the quantum relative entropy between two states.
In the absence of coherence between the states, our result reproduces classic TURs in thermodynamics.
arXiv Detail & Related papers (2024-04-28T12:36:35Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Which entropy for general physical theories? [44.99833362998488]
We address the problem of quantifying the information content of a source for an arbitrary information theory.
The functions that solve this problem in classical and quantum theory are Shannon's and von Neumann's entropy, respectively.
In a general information theory there are three different functions that extend the notion of entropy, and this opens the question as to whether any of them can universally play the role of the quantifier for the information content.
arXiv Detail & Related papers (2023-02-03T10:55:13Z) - Asymptotic Equipartition Theorems in von Neumann algebras [24.1712628013996]
We show that the smooth max entropy of i.i.d. states on a von Neumann algebra has an rate given by the quantum relative entropy.
Our AEP not only applies to states, but also to quantum channels with appropriate restrictions.
arXiv Detail & Related papers (2022-12-30T13:42:35Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Quantum Entropy [0.12183405753834559]
We propose a quantum entropy that quantify the randomness of a pure quantum state via a conjugate pair of observables forming the quantum phase space.
We conjecture an entropy law whereby that entropy of a closed system never decreases, implying a time arrow for particles physics.
arXiv Detail & Related papers (2021-06-29T13:04:55Z) - Aspects of Pseudo Entropy in Field Theories [0.0]
We numerically analyze a class of free scalar field theories and the XY spin model.
This reveals the basic properties of pseudo entropy in many-body systems.
We find that the non-positivity of the difference can be violated only if the initial and final states belong to different quantum phases.
arXiv Detail & Related papers (2021-06-06T13:25:35Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Pseudo Entropy in Free Quantum Field Theories [0.0]
We conjecture two novel properties of Pseudo entropy which we conjecture to be universal in field theories.
Our numerical results imply that pseudo entropy can play a role as a new quantum order parameter.
arXiv Detail & Related papers (2020-11-19T04:25:18Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - A Field Theory Study of Entanglement Wedge Cross Section: Odd Entropy [0.0]
We study odd entanglement entropy holographically dual to the entanglement wedge cross section.
In particular, we show that large amounts of quantum correlations ensure the odd entropy to be larger than von Neumann entropy.
arXiv Detail & Related papers (2020-04-08T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.