Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model
- URL: http://arxiv.org/abs/2404.16198v1
- Date: Wed, 24 Apr 2024 20:42:28 GMT
- Title: Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model
- Authors: Mojdeh Rahmanian, Seyed Mostafa Fakhrahmad, Seyedeh Zahra Mousavi,
- Abstract summary: Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants.
The complex nature of unstructured medical texts presents challenges in efficiently identifying participants.
In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Objective: Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants. Although leveraging electronic health records (EHR) for recruitment has gained popularity, the complex nature of unstructured medical texts presents challenges in efficiently identifying participants. Natural Language Processing (NLP) techniques have emerged as a solution with a recent focus on transformer models. In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task from unstructured medical notes collected in the EHR. Methods: To process the medical records, we selected the most related sentences of the records to the eligibility criteria needed for the trial. The SNOMED CT concepts related to each eligibility criterion were collected. Medical records were also annotated with MedCAT based on the SNOMED CT ontology. Annotated sentences including concepts matched with the criteria-relevant terms were extracted. A prompt-based large language model (Generative Pre-trained Transformer (GPT) in this study) was then used with the extracted sentences as the training set. To assess its effectiveness, we evaluated the model's performance using the dataset from the 2018 n2c2 challenge, which aimed to classify medical records of 311 patients based on 13 eligibility criteria through NLP techniques. Results: Our proposed model showed the overall micro and macro F measures of 0.9061 and 0.8060 which were among the highest scores achieved by the experiments performed with this dataset. Conclusion: The application of a prompt-based large language model in this study to classify patients based on eligibility criteria received promising scores. Besides, we proposed a method of extractive summarization with the aid of SNOMED CT ontology that can be also applied to other medical texts.
Related papers
- SNOBERT: A Benchmark for clinical notes entity linking in the SNOMED CT clinical terminology [43.89160296332471]
We propose a method for linking text spans in clinical notes to specific concepts in the SNOMED CT using BERT-based models.
The method consists of two stages: candidate selection and candidate matching. The models were trained on one of the largest publicly available dataset of labeled clinical notes.
arXiv Detail & Related papers (2024-05-25T08:00:44Z) - Assertion Detection Large Language Model In-context Learning LoRA
Fine-tuning [2.401755243180179]
We introduce a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection.
Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method.
arXiv Detail & Related papers (2024-01-31T05:11:00Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Effective Matching of Patients to Clinical Trials using Entity
Extraction and Neural Re-ranking [8.200196331837576]
Clinical trials (CTs) often fail due to inadequate patient recruitment.
This paper tackles the challenges of CT retrieval by presenting an approach that addresses the patient-to-trials paradigm.
arXiv Detail & Related papers (2023-07-01T16:42:39Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - Assessment of contextualised representations in detecting outcome
phrases in clinical trials [14.584741378279316]
We introduce "EBM-COMET", a dataset in which 300 PubMed abstracts are expertly annotated for clinical outcomes.
To extract outcomes, we fine-tune a variety of pre-trained contextualized representations.
We observe our best model (BioBERT) achieve 81.5% F1, 81.3% sensitivity and 98.0% specificity.
arXiv Detail & Related papers (2022-02-13T15:08:00Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Med7: a transferable clinical natural language processing model for
electronic health records [6.935142529928062]
We introduce a named-entity recognition model for clinical natural language processing.
The model is trained to recognise seven categories: drug names, route, frequency, dosage, strength, form, duration.
We evaluate the transferability of the developed model using the data from the Intensive Care Unit in the US to secondary care mental health records (CRIS) in the UK.
arXiv Detail & Related papers (2020-03-03T00:55:43Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment.
DeepEnroll is a cross-modal inference learning model to jointly encode enrollment criteria (tabular data) into a shared latent space for matching inference.
arXiv Detail & Related papers (2020-01-22T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.