Effective Matching of Patients to Clinical Trials using Entity
Extraction and Neural Re-ranking
- URL: http://arxiv.org/abs/2307.00381v1
- Date: Sat, 1 Jul 2023 16:42:39 GMT
- Title: Effective Matching of Patients to Clinical Trials using Entity
Extraction and Neural Re-ranking
- Authors: Wojciech Kusa, \'Oscar E. Mendoza, Petr Knoth, Gabriella Pasi, Allan
Hanbury
- Abstract summary: Clinical trials (CTs) often fail due to inadequate patient recruitment.
This paper tackles the challenges of CT retrieval by presenting an approach that addresses the patient-to-trials paradigm.
- Score: 8.200196331837576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical trials (CTs) often fail due to inadequate patient recruitment. This
paper tackles the challenges of CT retrieval by presenting an approach that
addresses the patient-to-trials paradigm. Our approach involves two key
components in a pipeline-based model: (i) a data enrichment technique for
enhancing both queries and documents during the first retrieval stage, and (ii)
a novel re-ranking schema that uses a Transformer network in a setup adapted to
this task by leveraging the structure of the CT documents. We use named entity
recognition and negation detection in both patient description and the
eligibility section of CTs. We further classify patient descriptions and CT
eligibility criteria into current, past, and family medical conditions. This
extracted information is used to boost the importance of disease and drug
mentions in both query and index for lexical retrieval. Furthermore, we propose
a two-step training schema for the Transformer network used to re-rank the
results from the lexical retrieval. The first step focuses on matching patient
information with the descriptive sections of trials, while the second step aims
to determine eligibility by matching patient information with the criteria
section. Our findings indicate that the inclusion criteria section of the CT
has a great influence on the relevance score in lexical models, and that the
enrichment techniques for queries and documents improve the retrieval of
relevant trials. The re-ranking strategy, based on our training schema,
consistently enhances CT retrieval and shows improved performance by 15\% in
terms of precision at retrieving eligible trials. The results of our
experiments suggest the benefit of making use of extracted entities. Moreover,
our proposed re-ranking schema shows promising effectiveness compared to larger
neural models, even with limited training data.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model [0.7373617024876725]
Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants.
The complex nature of unstructured medical texts presents challenges in efficiently identifying participants.
In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task.
arXiv Detail & Related papers (2024-04-24T20:42:28Z) - APIS: A paired CT-MRI dataset for ischemic stroke segmentation challenge [0.0]
APIS is the first paired public dataset with NCCT and ADC studies of acute ischemic stroke patients.
It was presented as a challenge at the 20th IEEE International Symposium on Biomedical Imaging 2023.
Despite all the teams employing specialized deep learning tools, the results suggest that the ischemic stroke segmentation task from NCCT remains challenging.
arXiv Detail & Related papers (2023-09-26T20:16:07Z) - PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage [2.602118060856794]
Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide.
This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage.
arXiv Detail & Related papers (2023-08-21T07:18:51Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Concurrent ischemic lesion age estimation and segmentation of CT brain
using a Transformer-based network [8.80381582892208]
We propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions.
Our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages =4.5 hours compared to 0.858 using a conventional approach.
arXiv Detail & Related papers (2023-06-21T13:00:49Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
We propose the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes when trained on a small dataset of chest CT-scans.
We show that CT-SGAN can significantly improve lung detection accuracy by pre-training a nodule on a vast amount of synthetic data.
arXiv Detail & Related papers (2021-10-14T22:20:40Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment.
DeepEnroll is a cross-modal inference learning model to jointly encode enrollment criteria (tabular data) into a shared latent space for matching inference.
arXiv Detail & Related papers (2020-01-22T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.