Knowledge Graph Completion using Structural and Textual Embeddings
- URL: http://arxiv.org/abs/2404.16206v1
- Date: Wed, 24 Apr 2024 21:04:14 GMT
- Title: Knowledge Graph Completion using Structural and Textual Embeddings
- Authors: Sakher Khalil Alqaaidi, Krzysztof Kochut,
- Abstract summary: We propose a relations prediction model that harnesses both textual and structural information within Knowledge Graphs.
Our approach integrates walks-based embeddings with language model embeddings to effectively represent nodes.
We demonstrate that our model achieves competitive results in the relation prediction task when evaluated on a widely used dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Graphs (KGs) are widely employed in artificial intelligence applications, such as question-answering and recommendation systems. However, KGs are frequently found to be incomplete. While much of the existing literature focuses on predicting missing nodes for given incomplete KG triples, there remains an opportunity to complete KGs by exploring relations between existing nodes, a task known as relation prediction. In this study, we propose a relations prediction model that harnesses both textual and structural information within KGs. Our approach integrates walks-based embeddings with language model embeddings to effectively represent nodes. We demonstrate that our model achieves competitive results in the relation prediction task when evaluated on a widely used dataset.
Related papers
- Knowledge Graph Embedding: An Overview [42.16033541753744]
We make a comprehensive overview of the current state of research in Knowledge Graph completion.
We focus on two main branches of KG embedding (KGE) design: 1) distance-based methods and 2) semantic matching-based methods.
Next, we delve into CompoundE and CompoundE3D, which draw inspiration from 2D and 3D affine operations.
arXiv Detail & Related papers (2023-09-21T21:52:42Z) - A Survey On Few-shot Knowledge Graph Completion with Structural and
Commonsense Knowledge [3.4012007729454807]
Few-shot KG completion (FKGC) requires the strengths of graph representation learning and few-shot learning.
This paper introduces FKGC challenges, commonly used KGs, and CKGs.
We then systematically categorize and summarize existing works in terms of the type of KGs and the methods.
arXiv Detail & Related papers (2023-01-03T16:00:09Z) - Dynamic Relevance Graph Network for Knowledge-Aware Question Answering [22.06211725256875]
This work investigates the challenge of learning and reasoning for Commonsense Question Answering given an external source of knowledge.
We propose a novel graph neural network architecture, called Dynamic Relevance Graph Network (DRGN)
DRGN operates on a given KG subgraph based on the question and answers entities and uses the relevance scores between the nodes to establish new edges.
arXiv Detail & Related papers (2022-09-20T18:52:05Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - A Review of Knowledge Graph Completion [0.0]
Information extraction methods proved to be effective at triple extraction from structured or unstructured data.
Most of the current knowledge graphs are incomplete.
In order to use KGs in downstream tasks, it is desirable to predict missing links in KGs.
arXiv Detail & Related papers (2022-08-24T16:42:59Z) - KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models [76.01814380927507]
KGxBoard is an interactive framework for performing fine-grained evaluation on meaningful subsets of the data.
In our experiments, we highlight the findings with the use of KGxBoard, which would have been impossible to detect with standard averaged single-score metrics.
arXiv Detail & Related papers (2022-08-23T15:11:45Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.